EE-Unit-IV Composting

Composting is the natural process of ‘rotting’ or decomposition of organic matter by microorganisms under controlled conditions. Raw organic materials such as crop residues, animal wastes, food garbage, some municipal wastes and suitable industrial wastes, enhance their suitability for application to the soil as a fertilizing resource, after having undergone composting.

Compost is a rich source of organic matter. Soil organic matter plays an important role in sustaining soil fertility, and hence in sustainable agricultural production. In addition to being a source of plant nutrient, it improves the physico-chemical and biological properties of the soil. As a result of these improvements, the soil: (i) becomes more resistant to stresses such as drought, diseases and toxicity; (ii) helps the crop in improved uptake of plant nutrients; and (iii) possesses an active nutrient cycling capacity because of vigorous microbial activity. These advantages manifest themselves in reduced cropping risks, higher yields and lower outlays on inorganic fertilizers for farmers.

Types of composting

Composting may be divided into two categories by the nature of the decomposition process. In anaerobic composting, decomposition occurs where oxygen (O) is absent or in limited supply. Under this method, anaerobic micro-organisms dominate and develop intermediate compounds including methane, organic acids, hydrogen sulphide and other substances. In the absence of O, these compounds accumulate and are not metabolized further. Many of these compounds have strong odours and some present phytotoxicity. As anaerobic composting is a low-temperature process, it leaves weed seeds and pathogens intact. Moreover, the process usually takes longer than aerobic composting. These drawbacks often offset the merits of this process, viz. little work involved and fewer nutrients lost during the process.

Aerobic composting takes place in the presence of ample O. In this process, aerobic microorganisms break down organic matter and produce carbon dioxide (CO2), ammonia, water, heat and humus, the relatively stable organic end product. Although aerobic composting may produce intermediate compounds such as organic acids, aerobic micro-organisms decompose them further. The resultant compost, with its relatively unstable form of organic matter, has little risk of phytotoxicity. The heat generated accelerates the breakdown of proteins, fats and complex carbohydrates such as cellulose and hemi-cellulose. Hence, the processing time is shorter. Moreover, this process destroys many micro-organisms that are human or plant pathogens, as well as weed seeds, provided it undergoes sufficiently high temperature. Although more nutrients are lost from the materials by aerobic composting, it is considered more efficient and useful than anaerobic composting for agricultural production. Most of this publication focuses on aerobic composting.

Composting objectives may also be achieved through the enzymatic degradation of organic materials as they pass through the digestive system of earthworms. This process is termed vermicomposting.

The aerobic composting process

The aerobic composting process starts with the formation of the pile. In many cases, the temperature rises rapidly to 70-80 °C within the first couple of days. First, mesophilic organisms (optimum growth temperature range = 20-45 °C) multiply rapidly on the readily available sugars and amino acids (Figure 1). They generate heat by their own metabolism and raise the temperature to a point where their own activities become suppressed. Then a few thermophilic fungi and several thermophilic bacteria (optimum growth temperature range = 50-70 °C or more) continue the process, raising the temperature of the material to 65 °C or higher. This peak heating phase is important for the quality of the compost as the heat kills pathogens and weed seeds.

The active composting stage is followed by a curing stage, and the pile temperature decreases gradually. The start of this phase is identified when turning no longer reheats the pile. At this stage, another group of thermophilic fungi starts to grow. These fungi bring about a major phase of decomposition of plant cell-wall materials such as cellulose and hemi-cellulose. Curing of the compost provides a safety net against the risks of using immature compost such as nitrogen (N) hunger, O deficiency, and toxic effects of organic acids on plants.

Eventually, the temperature declines to ambient temperature. By the time composting is completed, the pile becomes more uniform and less active biologically although mesophilic organisms recolonize the compost. The material becomes dark brown to black in colour. The particles reduce in size and become consistent and soil-like in texture. In the process, the amount of humus increases, the ratio of carbon to nitrogen (C:N) decreases, pH neutralizes, and the exchange capacity of the material increases.

FIGURE 1
Temperature changes and fungi populations in wheat straw compost

Note:
Solid line = temperature; broken line = mesophilic fungi population; dotted line = thermophilic fungi population; left y-axis = fungal populations (logarithm of colony forming units (cfu) per gram of compost plated onto agar); right y-axis = temperature in centre of compost. a, b, c and d = heating phases.
Source: http://helios.bto.ed.ac.uk/bto/microbes/thermo.htm

Factors affecting aerobic composting

Aeration

Aerobic composting requires large amounts of O, particularly at the initial stage. Aeration is the source of O, and, thus, indispensable for aerobic composting. Where the supply of O is not sufficient, the growth of aerobic micro-organisms is limited, resulting in slower decomposition. Moreover, aeration removes excessive heat, water vapour and other gases trapped in the pile. Heat removal is particularly important in warm climates as the risk of overheating and fire is higher. Therefore, good aeration is indispensable for efficient composting. It may be achieved by controlling the physical quality of the materials (particle size and moisture content), pile size and ventilation and by ensuring adequate frequency of turning.

Moisture

Moisture is necessary to support the metabolic activity of the micro-organisms. Composting materials should maintain a moisture content of 40-65 percent. Where the pile is too dry, composting occurs more slowly, while a moisture content in excess of 65 percent develops anaerobic conditions. In practice, it is advisable to start the pile with a moisture content of 50-60 percent, finishing at about 30 percent.

Nutrients

Micro-organisms require C, N, phosphorus (P) and potassium (K) as the primary nutrients. Of particular importance is the C:N ratio of raw materials. The optimal C:N ratio of raw materials is between 25:1 and 30:1 although ratios between 20:1 and 40:1 are also acceptable. Where the ratio is higher than 40:1, the growth of micro-organisms is limited, resulting in a longer composting time. A C:N ratio of less than 20:1 leads to underutilization of N and the excess may be lost to the atmosphere as ammonia or nitrous oxide, and odour can be a problem. The C:N ratio of the final product should be between about 10:1 and 15:1.

Temperature

The process of composting involves two temperature ranges: mesophilic and thermophilic. While the ideal temperature for the initial composting stage is 20-45 °C, at subsequent stages with the thermophilic organisms taking over, a temperature range of 50-70 °C may be ideal. High temperatures characterize the aerobic composting process and serve as signs of vigorous microbial activities. Pathogens are normally destroyed at 55 °C and above, while the critical point for elimination of weed seeds is 62 °C. Turnings and aeration can be used to regulate temperature.

Lignin content

Lignin is one of the main constituents of plant cell walls, and its complex chemical structure makes it highly resistant to microbial degradation (Richard, 1996). This nature of lignin has two implications. One is that lignin reduces the bioavailability of the other cell-wall constituents, making the actual C:N ratio (viz. ratio of biodegradable C to N) lower than the one normally cited. The other is that lignin serves as a porosity enhancer, which creates favourable conditions for aerobic composting. Therefore, while the addition of lignin-decomposing fungi may in some cases increase available C, accelerate composting and reduce N loss, in other cases it may result in a higher actual C:N ratio and poor porosity, both of which prolong composting time.

Polyphenols

Polyphenols include hydrolysable and condensed tannins (Schorth, 2003). Insoluble condensed tannins bind the cell walls and proteins and make them physically or chemically less accessible to decomposers. Soluble condensed and hydrolysable tannins react with proteins and reduce their microbial degradation and thus N release. Polyphenols and lignin are attracting more attention as inhibiting factors. Palm et al. (2001) suggest that the contents of these two substances be used to classify organic materials for more efficient on-farm natural resource utilization, including composting.

pH value

Although the natural buffering effect of the composting process lends itself to accepting material with a wide range of pH, the pH level should not exceed eight. At higher pH levels, more ammonia gas is generated and may be lost to the atmosphere.

EE-Unit-IV Solid Waste Management

Solid waste management is a polite term for garbage management. As long as humans have been living in settled communities, solid waste, or garbage, has been an issue, and modern societies generate far more solid waste than early humans ever did.

Daily life in industrialized nations can generate several pounds of solid waste per consumer, not only directly in the home, but indirectly in factories that manufacture goods purchased by consumers.

Garbage: many broad categories of garbage are:

i. Organic waste: kitchen waste, vegetables, flowers, leaves, fruits.

ii. Toxic waste: old medicines, paints, chemicals, bulbs, spray cans, fertilizer and pesticide containers, batteries, shoe polish.

iii. Recyclable: paper, glass, metals, plastics.

iv. Hospital waste such as cloth with blood

1. Types & Source of Solid Wastes:

Basically solid waste can be classified into different types depending on their source:

 

2. Effects of Solid Waste Pollution:

Municipal solid wastes heap up on the roads due to improper disposal system. People clean their own houses and litter their immediate surroundings which affects the community including themselves.

This type of dumping allows biodegradable materials to decompose under uncontrolled and unhygienic conditions. This produces foul smell and breeds various types of insects and infectious organisms besides spoiling the aesthetics of the site. Industrial solid wastes are sources of toxic metals and hazardous wastes, which may spread on land and can cause changes in physicochemical and biological characteristics thereby affecting productivity of soils.

Toxic substances may leach or percolate to contaminate the ground water. In refuse mixing, the hazardous wastes are mixed with garbage and other combustible wastes. This makes segregation and disposal all the more difficult and risky.

Various types of wastes like cans, pesticides, cleaning solvents, batteries (zinc, lead or mercury), radioactive materials, plastics and e-waste are mixed up with paper, scraps and other non-toxic materials which could be recycled. Burning of some of these materials produces dioxins, furans and polychlorinated biphenyls, which have the potential to cause various types of ailments including cancer.

3. Methods of Solid Wastes Disposal:

i. Sanitary Landfill

ii. Incineration

iii. Composting

iv. Pyrolysis

i. Sanitary Land Filling:

In a sanitary landfill, garbage is spread out in thin layers, compacted and covered with clay or plastic foam. In the modern landfills the bottom is covered with an impermeable liner, usually several layers of clay, thick plastic and sand. The liner protects the ground water from being contaminated due to percolation of leachate.

Leachate from bottom is pumped and sent for treatment. When landfill is full it is covered with clay, sand, gravel and top soil to prevent seepage of water. Several wells are drilled near the landfill site to monitor if any leakage is contaminating ground water. Methane produced by anaerobic decomposition is collected and burnt to produce electricity or heat. Sanitary Landfills Site Selection:

i. Should be above the water table, to minimize interaction with groundwater.

ii. Preferably located in clay or silt.

iii. Do not want to place in a rock quarry, as water can leech through the cracks inherent in rocks into a water fracture system.

iv. Do not want to locate in sand or gravel pits, as these have high leeching. Unfortunately, most of Long Island is sand or gravel, and many landfills are located in gravel pits, after they were no longer being used.

v. Do not want to locate in a flood plain. Most garbage tends to be less dense than water, so if the area of the landfill floods, the garbage will float to the top and wash away downstream.

A large number of adverse impacts may occur from landfill operations. These impacts can vary:

i. Fatal accidents (e.g., scavengers buried under waste piles).

ii. Infrastructure damage (e.g., damage to access roads by heavy vehicles).

iii. Pollution of the local environment (such as contamination of groundwater and/or aquifers by leakage and residual soil contamination during landfill usage, as well as after landfill closure).

iv. Off gassing of methane generated by decaying organic wastes (methane is a greenhouse gas many times more potent than carbon dioxide, and can itself be a danger to inhabitants of an area).

v. Harbouring of disease vectors such as rats and flies, particularly from improperly operated landfills.

ii. Incineration:

The term incinerates means to burn something until nothing is left but ashes. An incinerator is a unit or facility used to burn trash and other types of waste until it is reduced to ash. An incinerator is constructed of heavy, well-insulated materials, so that it does not give off extreme amounts of external heat.

The high levels of heat are kept inside the furnace or unit so that the waste is burned quickly and efficiently. If the heat were allowed to escape, the waste would not burn as completely or as rapidly. Incineration is a disposal method in which solid organic wastes are subjected to combustion so as to convert them into residue and gaseous products. This method is useful for disposal of residue of both solid waste management and solid residue from waste water management. This process reduces the volumes of solid waste to 20 to 30 per cent of the original volume.

Incineration and other high temperature waste treatment systems are sometimes described as “thermal treatment”. Incinerators convert waste materials into heat, gas, steam and ash. Incineration is carried out both on a small scale by individuals and on a large scale by industry. It is used to dispose of solid, liquid and gaseous waste. It is recognized as a practical method of disposing of certain hazardous waste materials. Incineration is a controversial method of waste disposal, due to issues such as emission of gaseous pollutants.

iii. Composting:

Due to shortage of space for landfill in bigger cities, the biodegradable yard waste (kept separate from the municipal waste) is allowed to degrade or decompose in a medium. A good quality nutrient rich and environmental friendly manure is formed which improves the soil conditions and fertility.

Organic matter constitutes 35%-40% of the municipal solid waste generated in India. This waste can be recycled by the method of composting, one of the oldest forms of disposal. It is the natural process of decomposition of organic waste that yields manure or compost, which is very rich in nutrients.

Composting is a biological process in which micro-organisms, mainly fungi and bacteria, convert degradable organic waste into humus like substance. This finished product, which looks like soil, is high in carbon and nitrogen and is an excellent medium for growing plants.

The process of composting ensures the waste that is produced in the kitchens is not carelessly thrown and left to rot. It recycles the nutrients and returns them to the soil as nutrients. Apart from being clean, cheap, and safe, composting can significantly reduce the amount of disposable garbage.

The organic fertilizer can be used instead of chemical fertilizers and is better specially when used for vegetables. It increases the soil’s ability to hold water and makes the soil easier to cultivate. It helped the soil retain more of the plant nutrients.

Vermi-composting has become very popular in the last few years. In this method, worms are added to the compost. These help to break the waste and the added excreta of the worms makes the compost very rich in nutrients. In the activity section of this web site you can learn how to make a compost pit or a vermi-compost pit in your school or in the garden at home.

To make a compost pit, you have to select a cool, shaded corner of the garden or the school compound and dig a pit, which ideally should be 3 feet deep. This depth is convenient for aerobic composting as the compost has to be turned at regular intervals in this process.

Preferably the pit should be lined with granite or brick to prevent nitrite pollution of the subsoil water, which is known to be highly toxic. Each time organic matter is added to the pit it should be covered with a layer of dried leaves or a thin layer of soil which allows air to enter the pit thereby preventing bad odour. At the end of 45 days, the rich pure organic matter is ready to be used. Composting: some benefits

i. Compost allows the soil to retain more plant nutrients over a longer period.

ii. It supplies part of the 16 essential elements needed by the plants.

iii. It helps reduce the adverse effects of excessive alkalinity, acidity, or the excessive use of chemical fertilizer.

iv. It makes soil easier to cultivate.

v. It helps keep the soil cool in summer and warm in winter.

vi. It aids in preventing soil erosion by keeping the soil covered.

vii. It helps in controlling the growth of weeds in the garden.

iv. Pyrolysis:

Pyrolysis is a form of incineration that chemically decomposes organic materials by heat in the absence of oxygen. Pyrolysis typically occurs under pressure and at operating temperatures above 430 °C (800 °F).

In practice, it is not possible to achieve a completely oxygen-free atmosphere. Because some oxygen is present in any pyrolysis system, a small amount of oxidation occurs. If volatile or semi-volatile materials are present in the waste, thermal desorption will also occur.

Organic materials are transformed into gases, small quantities of liquid, and a solid residue containing carbon and ash. The off-gases may also be treated in a secondary thermal oxidation unit. Particulate removal equipment is also required. Several types of pyrolysis units are available, including the rotary kiln, rotary hearth furnace, and fluidized bed furnace. These units are similar to incinerators except that they operate at lower temperatures and with less air supply.

Limitations and Concerns:

i. The technology requires drying of soil prior to treatment.

ii. Limited performance data are available for systems treating hazardous wastes containing polychlorinated biphenyls (PCBs), dioxins, and other organics. There is concern that systems that destroy chlorinated organic molecules by heat have the potential to create products of incomplete combustion, including dioxins and furans. These compounds are extremely toxic in the parts per trillion ranges. The MSO process reportedly does not produce dioxins and furans.

iii. The molten salt is usually recycled in the reactor chamber. However, depending on the waste treated (especially inorganics) and the amount of ash, spent molten salt may be hazardous and require special care in disposal.

iv. pyrolysis is not effective in either destroying or physically separating in organics from the contaminated medium. Volatile metals may be removed as a result of the higher temperatures associated with the process, but they are not destroyed. By-products containing heavy metals may require stabilization before final disposal.

v. When the off-gases are cooled, liquids condense, producing an oil/tar residue and contaminated water. These oils and tars may be hazardous wastes, requiring proper treatment, storage, and disposal.

EE-Unit-IV Solid Waste Management

Solid-waste management, sanitary landfill [Credit: iStockphoto/Thinkstock]the collecting, treating, and disposing of solid material that is discarded because it has served its purpose or is no longer useful. Improper disposal of municipal solid waste can create unsanitary conditions, and these conditions in turn can lead to pollution of the environment and to outbreaks of vector-borne disease—that is, diseases spread by rodents and insects. The tasks of solid-waste management present complex technical challenges. They also pose a wide variety of administrative, economic, and social problems that must be managed and solved.

Historical background

Early waste disposal

In ancient cities, wastes were thrown onto unpaved streets and roadways, where they were left to accumulate. It was not until 320 bce in Athens that the first known law forbidding this practice was established. At that time a system for waste removal began to evolve in Greece and in the Greek-dominated cities of the eastern Mediterranean. In ancient Rome, property owners were responsible for cleaning the streets fronting their property. But organized waste collection was associated only with state-sponsored events such as parades. Disposal methods were very crude, involving open pits located just outside the city walls. As populations increased, efforts were made to transport waste farther out from the cities.

After the fall of Rome, waste collection and municipal sanitation began a decline that lasted throughout the Middle Ages. Near the end of the 14th century, scavengers were given the task of carting waste to dumps outside city walls. But this was not the case in smaller towns, where most people still threw waste into the streets. It was not until 1714 that every city in England was required to have an official scavenger. Toward the end of the 18th century in America, municipal collection of garbage was begun in Boston, New York City, and Philadelphia. Waste disposal methods were still very crude, however. Garbage collected in Philadelphia, for example, was simply dumped into the Delaware River downstream from the city.

Developments in waste management

A technological approach to solid-waste management began to develop in the latter part of the 19th century. Watertight garbage cans were first introduced in the United States, and sturdier vehicles were used to collect and transport wastes. A significant development in solid-waste treatment and disposal practices was marked by the construction of the first refuse incinerator in England in 1874. By the beginning of the 20th century, 15 percent of major American cities were incinerating solid waste. Even then, however, most of the largest cities were still using primitive disposal methods such as open dumping on land or in water.

Technological advances continued during the first half of the 20th century, including the development of garbage grinders, compaction trucks, and pneumatic collection systems. By mid-century, however, it had become evident that open dumping and improper incineration of solid waste were causing problems of pollution and jeopardizing public health. As a result, sanitary landfills were developed to replace the practice of open dumping and to reduce the reliance on waste incineration. In many countries waste was divided into two categories, hazardous and nonhazardous, and separate regulations were developed for their disposal. Landfills were designed and operated in a manner that minimized risks to public health and the environment. New refuse incinerators were designed to recover heat energy from the waste and were provided with extensive air pollution control devices to satisfy stringent standards of air quality. Modern solid-waste management plants in most developed countries now emphasize the practice of recycling and waste reduction at the source rather than incineration and land disposal.

Solid-waste characteristics

Composition and properties

The sources of solid waste include residential, commercial, institutional, and industrial activities. Certain types of wastes that cause immediate danger to exposed individuals or environments are classified as hazardous; these are discussed in the article hazardous-waste management. All nonhazardous solid waste from a community that requires collection and transport to a processing or disposal site is called refuse or municipal solid waste (MSW). Refuse includes garbage and rubbish. Garbage is mostly decomposable food waste; rubbish is mostly dry material such as glass, paper, cloth, or wood. Garbage is highly putrescible or decomposable, whereas rubbish is not. Trash is rubbish that includes bulky items such as old refrigerators, couches, or large tree stumps. Trash requires special collection and handling.

Construction and demolition (C&D) waste (or debris) is a significant component of total solid waste quantities (about 20 percent in the United States), although it is not considered to be part of the MSW stream. However, because C&D waste is inert and nonhazardous, it is usually disposed of in municipal sanitary landfills (see below).

Another type of solid waste, perhaps the fastest-growing component in many developed countries, is electronic waste, or e-waste, which includes discarded computer equipment, televisions, telephones, and a variety of other electronic devices. In 2006 e-waste made up 5 percent of the total solid waste stream, and the United Nations Environment Programme estimated that developed countries would triple their output of e-waste by 2010. Concern over this type of waste is escalating. Lead, mercury, andcadmium are among the materials of concern in electronic devices, and governmental policies may be required to regulate their recycling and disposal.

Solid-waste characteristics vary considerably among communities and nations. American refuse is usually lighter, for example, than European or Japanese refuse. In the United States paper and paperboard products make up close to 40 percent of the total weight of MSW; food waste accounts for less than 10 percent. The rest is a mixture of yard trimmings, wood, glass, metal, plastic, leather, cloth, and other miscellaneous materials. In a loose or uncompacted state, MSW of this type weighs approximately 120 kg per cubic metre (200 pounds per cubic yard). These figures vary with geographic location, economic conditions, season of the year, and many other factors. Waste characteristics from each community must be studied carefully before any treatment or disposal facility is designed and built.

Generation and storage

Rates of solid-waste generation vary widely. In the United States, for example, municipal refuse is generated at an average rate of approximately 2 kg (4.4 pounds) per person per day. Japan generates roughly half this amount, yet in Canada the rate is 3 kg (almost 7 pounds) per person per day. In some developing countries (e.g., India) the average rate can be lower than 0.5 kg (1 pound) per person per day. These data include refuse from commercial, institutional, and industrial as well as residential sources. The actual rates of refuse generation must be carefully determined when a community plans a solid-waste management project.

Most communities require household refuse to be stored in durable, easily cleaned containers with tight-fitting covers in order to minimize rodent or insect infestation and offensive odours. Galvanized metal or plastic containers of about 115-litre (30-gallon) capacity are commonly used, although some communities employ larger containers that can be mechanically lifted and emptied into collection trucks. Plastic bags are frequently used as liners or as disposable containers for curbside collection. Where large quantities of refuse are generated—such as at shopping centres, hotels, or apartment buildings—dumpsters may be used for temporary storage until the waste is collected. Some office and commercial buildings use on-site compactors to reduce the waste volume.

Solid-waste collection

Collecting and transporting

Proper solid-waste collection is important for the protection of public health, safety, and environmental quality. It is a labour-intensive activity, accounting for approximately three-quarters of the total cost of solid-waste management. Public employees are often assigned to the task, but sometimes it is more economical for private companies to do the work under contract to the municipality or for private collectors to be paid by individual home owners. A driver and one or two loaders serve each collection vehicle. These are typically trucks of the enclosed, compacting type, with capacities up to 30 cubic metres (40 cubic yards). Loading can be done from the front, rear, or side. Compaction reduces the volume of refuse in the truck to less than half of its loose volume.

The task of selecting an optimal collection route is a complex problem, especially for large and densely populated cities. An optimal route is one that results in the most efficient use of labour and equipment, and selecting such a route requires the application of computer analyses that account for all the many design variables in a large and complex network. Variables include frequency of collection, haulage distance, type of service, and climate. Collection of refuse in rural areas can present a special problem, since the population densities are low, leading to high unit costs.

Refuse collection usually occurs at least once per week because of the rapid decomposition of food waste. The amount of garbage in the refuse of an individual home can be reduced by garbage grinders, or garbage disposals. Ground garbage puts an extra load on sewerage systems, but this can usually be accommodated. Many communities now conduct source separation and recycling programs, in which homeowners and businesses separate recyclable materials from garbage and place them in separate containers for collection. In addition, some communities have drop-off centres where residents can bring recyclables.

Transfer stations

If the final destination of the refuse is not near the community in which it is generated, one or more transfer stations may be necessary. A transfer station is a central facility where refuse from many collection vehicles is combined into a larger vehicle, such as a tractor-trailer unit. Open-top trailers are designed to carry about 76 cubic metres (100 cubic yards) of uncompacted waste to a regional processing or disposal location. Closed compactor-type trailers are also available, but they must be equipped with ejector mechanisms. In a direct discharge type of station, several collection trucks empty directly into the transport vehicle. In a storage discharge type of station, refuse is first emptied into a storage pit or onto a platform, and then machinery is used to hoist or push the solid waste into the transport vehicle. Large transfer stations can handle more than 500 tons of refuse per day.

Solid-waste treatment and disposal

Once collected, municipal solid waste may be treated in order to reduce the total volume and weight of material that requires final disposal. Treatment changes the form of the waste and makes it easier to handle. It can also serve to recover certain materials, as well as heat energy, for recycling or reuse.

Incineration

FURNACE OPERATION

Burning is a very effective method of reducing the volume and weight of solid waste. In modern incinerators the waste is burned inside a properly designed furnace under very carefully controlled conditions. The combustible portion of the waste combines with oxygen, releasing mostly carbon dioxide, water vapour, and heat. Incineration can reduce the volume of uncompacted waste by more than 90 percent, leaving an inert residue of ash, glass, metal, and other solid materials called bottom ash. The gaseous by-products of incomplete combustion, along with finely divided particulate material called fly ash, are carried along in the incinerator airstream. Fly ash includes cinders, dust, and soot. In order to remove fly ash and gaseous by-products before they are exhausted into the atmosphere, modern incinerators must be equipped with extensive emission control devices. Such devices include fabric baghouse filters, acid gas scrubbers, and electrostatic precipitators. (See also air pollution control.) Bottom ash and fly ash are usually combined and disposed of in a landfill. If the ash is found to contain toxic metals, it must be managed as a hazardous waste.

Municipal solid-waste incinerators are designed to receive and burn a continuous supply of refuse. A deep refuse storage pit, or tipping area, provides enough space for about one day of waste storage. The refuse is lifted from the pit by a crane equipped with a bucket or grapple device. It is then deposited into a hopper and chute above the furnace and released onto a charging grate or stoker. The grate shakes and moves waste through the furnace, allowing air to circulate around the burning material. Modern incinerators are usually built with a rectangular furnace, although rotary kiln furnaces and vertical circular furnaces are available. Furnaces are constructed of refractory bricks that can withstand the high combustion temperatures.

Combustion in a furnace occurs in two stages: primary and secondary. In primary combustion, moisture is driven off, and the waste is ignited and volatilized. In secondary combustion, the remaining unburned gases and particulates are oxidized, eliminating odours and reducing the amount of fly ash in the exhaust. When the refuse is very moist, auxiliary gas or fuel oil is sometimes burned to start the primary combustion.

In order to provide enough oxygen for both primary and secondary combustion, air must be thoroughly mixed with the burning refuse. Air is supplied from openings beneath the grates or is admitted to the area above. The relative amounts of this underfire air and overfire air must be determined by the plant operator to achieve good combustion efficiency. A continuous flow of air can be maintained by a natural draft in a tall chimney or by mechanical forced-draft fans.

ENERGY RECOVERY

The energy value of refuse can be as much as one-third that of coal, depending on the paper content, and the heat given off during incineration can be recovered by the use of a refractory-lined furnace coupled to a boiler. Boilers convert the heat of combustion into steam or hot water, thus allowing the energy content of the refuse to be recycled. Incinerators that recycle heat energy in this way are calledwaste-to-energy plants. Instead of a separate furnace and boiler, a water-tube wall furnace may also be used for energy recovery. Such a furnace is lined with vertical steel tubes spaced closely enough to form continuous sections of wall. The walls are insulated on the outside in order to reduce heat loss. Water circulating through the tubes absorbs heat to produce steam, and it also helps to control combustion temperatures without the need for excessive air, thus lowering air pollution control costs.

Waste-to-energy plants operate as either mass burn or refuse-derived fuel systems. A mass burn system uses all the refuse, without prior treatment or preparation. A refuse-derived fuel system separates combustible wastes from noncombustibles such as glass and metal before burning. If a turbine is installed at the plant, both steam and electricity can be produced in a process called cogeneration.

Waste-to-energy systems are more expensive to build and operate than plain incinerators because of the need for special equipment and controls, highly skilled technical personnel, and auxiliary fuel systems. On the other hand, the sale of generated steam or electricity offsets much of the extra cost, and recovery of heat energy from refuse is a viable solid-waste management option from both an engineering and an economic point of view. About 80 percent of municipal refuse incinerators in the United States are waste-to-energy facilities.

Composting

Another method of treating municipal solid waste is composting, a biological process in which the organic portion of refuse is allowed to decompose under carefully controlled conditions. Microbes metabolize the organic waste material and reduce its volume by as much as 50 percent. The stabilized product is called compost or humus. It resembles potting soil in texture and odour and may be used as a soil conditioner or mulch.

Composting offers a method of processing and recycling both garbage and sewage sludge in one operation. As more stringent environmental rules and siting constraints limit the use of solid-waste incineration and landfill options, the application of composting is likely to increase. The steps involved in the process include sorting and separating, size reduction, and digestion of the refuse.

SORTING AND SHREDDING

The decomposable materials in refuse are isolated from glass, metal, and other inorganic items through sorting and separating operations. These are carried out mechanically, using differences in such physical characteristics of the refuse as size, density, and magnetic properties. Shredding or pulverizing reduces the size of the waste articles, resulting in a uniform mass of material. It is accomplished with hammer mills and rotary shredders.

DIGESTING AND PROCESSING

Pulverized waste is ready for composting either by the open windrow method or in an enclosed mechanical facility. Windrows are long, low mounds of refuse. They are turned or mixed every few days to provide air for the microbes digesting the organics. Depending on moisture conditions, it may take five to eight weeks for complete digestion of the waste. Because of the metabolic action of aerobic bacteria, temperatures in an active compost pile reach about 65 °C (150 °F), killing pathogenic organisms that may be in the waste material.

Open windrow composting requires relatively large land areas. Enclosed mechanical composting facilities can reduce land requirements by about 85 percent. Mechanical composting systems employ one or more closed tanks or digesters equipped with rotating vanes that mix and aerate the shredded waste. Complete digestion of the waste takes about one week.

Digested compost must be processed before it can be used as a mulch or soil conditioner. Processing includes drying, screening, and granulating or pelletizing. These steps improve the market value of the compost, which is the most serious constraint to the success of composting as a waste management option. Agricultural demand for digested compost is usually low because of the high cost of transporting it and because of competition with inorganic chemical fertilizers.

Sanitary landfill

sanitary landfill [Credit: Encyclopædia Britannica, Inc.]Land disposal is the most common management strategy for municipal solid waste. Refuse can be safely deposited in a sanitary landfill, a disposal site that is carefully selected, designed, constructed, and operated to protect the environment and public health. One of the most important factors relating to landfilling is that the buried waste never comes in contact with surface water or groundwater. Engineering design requirements include a minimum distance between the bottom of the landfill and the seasonally high groundwater table. Most new landfills are required to have an impermeable liner or barrier at the bottom, as well as a system of groundwater-monitoring wells. Completed landfill sections must be capped with an impermeable cover to keep precipitation or surface runoff away from the buried waste. Bottom and cap liners may be made of flexible plasticmembranes, layers of clay soil, or a combination of both.

CONSTRUCTING THE LANDFILL

sanitary landfill [Credit: Encyclopædia Britannica, Inc.]The basic element of a sanitary landfill is the refuse cell. This is a confined portion of the site in which refuse is spread and compacted in thin layers. Several layers may be compacted on top of one another to a maximum depth of about 3 metres (10 feet). The compacted refuse occupies about one-quarter of its original loose volume. At the end of each day’s operation, the refuse is covered with a layer of soil to eliminate windblown litter, odours, and insect or rodent problems. One refuse cell thus contains the daily volume of compacted refuse and soil cover. Several adjacent refuse cells make up a lift, and eventually a landfill may comprise two or more lifts stacked one on top of the other. The final cap for a completed landfill may also be covered with a layer of topsoil that can support vegetative growth.

Daily cover soil may be available on-site, or it may be hauled in and stockpiled from off-site sources. Various types of heavy machinery, such as crawler tractors or rubber-tired dozers, are used to spread and compact the refuse and soil. Heavy steel-wheeled compactors may also be employed to achieve high-density compaction of the refuse.

The area and depth of a new landfill are carefully staked out, and the base is prepared for construction of any required liner and leachate-collection system. Where a plastic liner is used, at least 30 cm (12 inches) of sand is carefully spread over it to provide protection from landfill vehicles. At sites where excavations can be made below grade, the trench method of construction may be followed. Where this is not feasible because of topography or groundwater conditions, the area method may be practiced, resulting in a mound or hill rising above the original ground. Since no ground is excavated in the area method, soil usually must be hauled to the site from some other location. Variations of the area method may be employed where a landfill site is located on sloping ground, in a valley, or in a ravine. The completed landfill eventually blends in with the landscape.

CONTROLLING BY-PRODUCTS

Organic material buried in a landfill decomposes by anaerobic microbial action. Complete decomposition usually takes more than 20 years. One of the by-products of this decomposition ismethane gas. Methane is poisonous and explosive when diluted in the air, and it can flow long distances through porous layers of soil. If it is allowed to collect in basements or other confined areas, dangerous conditions may arise. In modern landfills, methane movement is controlled by impermeable barriers and by gas-venting systems. In some landfills the methane gas is collected and recovered for use as a fuel.

A highly contaminated liquid called leachate is another by-product of decomposition in sanitary landfills. Most leachate is the result of runoff that infiltrates the refuse cells and comes in contact with decomposing garbage. If leachate reaches the groundwater or seeps out onto the ground surface, serious environmental pollution problems can occur, including the possible contamination of drinking-water supplies. Methods of controlling leachate include the interception of surface water in order to prevent it from entering the landfill and the use of impermeable liners or barriers between the waste and the groundwater. New landfill sites should also be provided with groundwater-monitoring wells and leachate-collection and treatment systems.

IMPORTANCE IN WASTE MANAGEMENT

In communities where appropriate sites are available, sanitary landfills usually provide the most economical option for disposal of nonrecyclable refuse. However, it is becoming increasingly difficult to find sites that offer adequate capacity, accessibility, and environmental conditions. Nevertheless, landfills will always play a key role in solid-waste management. It is not possible to recycle all components of solid waste, and there will always be residues from incineration and other treatment processes that will eventually require disposal underground. In addition, landfills can actually improve poor-quality land. In some communities properly completed landfills are converted into recreational parks, playgrounds, or golf courses.

Recycling

recycling: role in solid-waste disposal [Credit: Encyclopædia Britannica, Inc.]Separating, recovering, and reusing components of solid waste that may still have economic value is called recycling. One type of recycling is the recovery and reuse of heat energy, a practice discussed separately inIncineration. Composting can also be considered a recycling process, since it reclaims the organic parts of solid waste for reuse as mulch or soil conditioner. Still other waste materials have potential for reuse. These include paper, metal, glass, plastic, and rubber, and their recovery is discussed here.

SEPARATION

refuse disposal system: plastic bins filled with recyclable materials waiting to be picked up [Credit: Ted Russell—Photographer’s Choice/Getty Images]Before any material can be recycled, it must be separated from the raw waste and sorted. Separation can be accomplished at the source of the waste or at a central processing facility. Source separation, also called curbside separation, is done by individual citizens who collect newspapers, bottles, cans, and garbage separately and place them at the curb for collection. Many communities allow “commingling” of nonpaper recyclables (glass, metal, and plastic). In either case, municipal collection of source-separated refuse is more expensive than ordinary refuse collection.

In lieu of source separation, recyclable materials can be separated from garbage at centralized mechanical processing plants. Experience has shown that the quality of recyclables recovered from such facilities is lowered by contamination with moist garbage and broken glass. The best practice, as now recognized, is to have citizens separate refuse into a limited number of categories, including newspaper; magazines and other wastepaper; commingled metals, glass, and plastics; and garbage and other nonrecyclables. The newspaper, other paper wastes, and commingled recyclables are collected separately from the other refuse and are processed at a centralized material recycling facility, or MRF (pronounced “murf” in waste-management jargon). A modern MRF can process about 300 tons of recyclable wastes per day.

At a typical MRF, commingled recyclables are loaded onto a conveyor. Steel cans (“tin” cans are actually steel with only a thin coating of tin) are removed by an electromagnetic separator, and the remaining material passes over a vibrating screen in order to remove broken glass. Next, the conveyor passes through an air classifier, which separates aluminum and plastic containers from heavier glass containers. Glass is manually sorted by colour, and aluminum cans are separated from plastics by an eddy-current separator, which repels the aluminum from the conveyor belt.

REUSE

Recovered broken glass can be crushed and used in asphalt pavement. Colour-sorted glass is crushed and sold to glass manufacturers as cullet, an essential ingredient in glassmaking. Steel cans are baled and shipped to steel mills as scrap, and aluminum is baled or compacted for reuse by smelters. Aluminum is one of the smallest components of municipal solid waste, but it has the highest value as a recyclable material. Recycling of plastic is a challenge, mostly because of the many different polymeric materials used in its production. Mixed thermoplastics can be used only to make lower-quality products, such as “plastic lumber.”

In the paper stream, old newspapers are sorted by hand on a conveyor belt in order to remove corrugated materials and mixed papers. They are then baled or loose-loaded into trailers for shipment to paper mills, where they are reused in the making of more newspaper. Mixed paper is separated from corrugated paper for sale to tissue mills. Although the processes of pulping, de-inking, and screening wastepaper are generally more expensive than making paper from virgin wood fibres, the market for recycled paper should improve as more processing plants are established.

Rubber is sometimes reclaimed from solid waste and shredded, reformed, and remolded in a process called revulcanization, but it is usually not as strong as the original material. Shredded rubber can be used as an additive in asphalt pavements, and discarded tires may be employed as swings and other recreational structures for use by children in “tire playgrounds.” In general, the most difficult problem associated with the recycling of any solid-waste material is finding applications and suitable markets. Recycling by itself will not solve the growing problem of solid-waste management and disposal. There will always be some unusable and completely valueless solid residue requiring final disposal.

EE-Unit-IV Lithosphere

The word lithosphere is derived from the word sphere, combined with the Greek word lithos, meaning rock . The lithosphere is the solid outer section of Earth, which includes Earth’s crust(the “skin” of rock on the outer layer of planet Earth), as well as the underlying cool, dense, and rigid upper part of the upper mantle. The lithosphere extends from the surface of Earth to a depth of about 44–62 mi (70–100 km). This relatively cool and rigid section of Earth is believed to “float” on top of the warmer, non-rigid, and partially melted material directly below.

Earth is made up of several layers. The outermost layer is called Earth’s crust. The thickness of the crust varies. Under the oceans , the crust is only about 3–5 mi (5–10 km) thick. Under the continents, however, the crust thickens to about 22 mi (35 km) and reaches depths of up to 37 mi (60 km) under some mountain ranges. Beneath the crust is a layer of rock material that is also solid, rigid, and relatively cool, but is assumed to be made up of denser material. This layer is called the upper part of the upper mantle, and varies in depth from about 31–62 mi (50–100 km) below Earth’s surface. The combination of the crust and this upper part of the upper mantle, which are both comprised of relatively cool and rigid rock material, is called the lithosphere.

Below the lithosphere, the temperature is believed to reach 1,832°F (1,000°C), which is warm enough to allow rock material to flow if pressurized. Seismic evidence suggests that there is also some molten material at this depth (perhaps about 10%). This zone which lies directly below the lithosphere is called the asthenosphere , from the Greek word asthenes, meaning weak. The lithosphere, including both the solid portion of the upper mantle and Earth’s crust, is carried “piggyback” on top of the weaker, less rigid asthenosphere, which seems to be in continual motion. This motion creates stress in the rigid rock layers above it, forcing the slabs or plates of the lithosphere to jostle against each other, much like ice cubes floating in a bowl of swirlingwater . This motion of the lithospheric plates is known as plate tectonics , and is responsible for many of the movements seen on Earth’s surface today including earthquakes, certain types of volcanic activity, and continental drift.

EE-Unit-IV Land pollution

Land pollution, in other words, means degradation or destruction of earth’s surface and soil, directly or indirectly as a result of human activities. Anthropogenic activities are conducted citing development, and the same affects the land drastically, we witness land pollution; by drastic we are referring to any activity that lessens the quality and/or productivity of the land as an ideal place for agriculture, forestation, construction etc. The degradation of land that could be used constructively in other words is land pollution.

Land Pollution has led to a series of issues that we have come to realize in recent times, after decades of neglect. The increasing numbers of barren land plots and the decreasing numbers of forest cover is at an alarming ratio. Moreover the extension of cities and towns due to increasing population is leading to further exploitation of the land. Land fills and reclamations are being planned and executed to meet the increased demand of lands. This leads to further deterioration of land, and pollution caused by the land fill contents. Also due to the lack of green cover, the land gets affected in several ways like soil erosion occurs washing away the fertile portions of the land. Or even a landslide can be seen as an example.

Causes of Land Pollution

Below are the sources of land pollution:

1. Deforestation and soil erosion: Deforestation carried out to create dry lands is one of the major concerns. Land that is once converted into a dry or barren land, can never be made fertile again, whatever the magnitude of  measures to redeem it are. Land conversion, meaning the alteration or modification of the original properties of the land to make it use-worthy for a specific purpose is another major cause. This hampers the land immensely. Also there is a constant waste of land. Unused available land over the years turns barren; this land then cannot be used. So in search of more land, potent land is hunted and its indigenous state is compromised with.

2. Agricultural activities: With growing human population, demand for food has increased considerably. Farmers often use highly toxic fertilizers and pesticides to get rid off insects, fungi and bacteria from their crops. However with the overuse of these chemicals, they result in contamination and poisoning of soil.

3. Mining activities: During extraction and mining activities, several land spaces are created beneath the surface. We constant hear about land caving in; this is nothing but nature’s way of filling the spaces left out after mining or extraction activity.

4. Overcrowded landfills: Each household produces tonnes of garbage each year. Garbage like aluminum, plastic, paper, cloth, wood is collected and sent to the local recycling unit. Items that can not be recycled become a part of the landfills that hampers the beauty of the city and cause land pollution.

5. Industrialization: Due to increase in demand for food, shelter and house, more goods are produced. This resulted in creation of more waste that needs to be disposed of.  To meet the demand of the growing population, more industries were developed which led to deforestation. Research and development paved the way for modern fertilizers and chemicals that were highly toxic and led to soil contamination.

6. Construction activities: Due to urbanization, large amount of construction activities are taking place which has resulted in large waste articles like wood, metal, bricks, plastic that can be seen by naked eyes outside any building or office which is under construction.

7. Nuclear waste: Nuclear plants can produce huge amount of energy through nuclear fission and fusion. The left over radioactive material contains harmful and toxic chemicals that can affect human health. They are dumped beneath the earth to avoid any casualty.

8. Sewage treatment: Large amount of solid waste is leftover once the sewage has been treated. The leftover material is sent to landfill site which end up in polluting the environment.

Effects of Land Pollution

1. Soil pollution: Soil pollution is another form of land pollution, where the upper layer of the soil is damaged. This is caused by the overuse of chemical fertilizers, soil erosion caused by running water and other pest control measures; this leads to loss of fertile land for agriculture, forest cover, fodder patches for grazing etc.

2. Change in climate patterns: The effects of land pollution are very hazardous and can lead to the loss of ecosystems. When land is polluted, it directly or indirectly affects the climate patterns.

3. Environmental Impact: When deforestation is committed, the tree cover is compromised on. This leads to a steep imbalance in the rain cycle. A disturbed rain cycle affects a lot of factors. To begin with, the green cover is reduced. Trees and plants help balance the atmosphere, without them we are subjected to various concerns like Global warming, the green house effect, irregular rainfall and flash floods among other imbalances.

4. Effect on human health: The land when contaminated with toxic chemicals and pesticides lead to problem of skin cancer and human respiratory system. The toxic chemicals can reach our body through foods and vegetables that we eat as they are grown in polluted soil.

5. Cause Air pollution: Landfills across the city keep on growing due to increase in waste and are later burned which leads to air pollution. They become home for rodents, mice etc which in turn transmit diseases.

6. Distraction for Tourist: The city looses its attraction as tourist destination as landfills do not look good when you move around the city. It leads to loss of revenue for the state government.

7. Effect on wildlife: The animal kingdom has suffered mostly in the past decades. They face a serious threat with regards to loss of habitat and natural environment. The constant human activity on land, is leaving it polluted; forcing these species to move further away and adapt to new regions or die trying to adjust. Several species are pushed to the verge of extinction, due to no homeland.

Other issues that we face include increased temperature, unseasonal weather activity, acid rains etc.  The discharge of chemicals on land, makes it dangerous for the ecosystem too. These chemicals are consumed by the animals and plants and thereby make their way in the ecosystem. This process is called bio magnification and is a serious threat to the ecology.

Solutions for Land Pollution

1. Make people aware about the concept of Reduce, Recycle and Reuse.

2. Reduce the use of pesticides and fertilizers in agricultural activities.

3. Avoid buying packages items as they will lead to garbage and end up in landfill site.

4. Ensure that you do not litter on the ground and do proper disposal of garbage.

5. Buy biodegradable products.

6. Do Organic gardening and eat organic food that will be grown without the use of pesticides.

7. Create dumping ground away from residential areas.

EE_Unit-III Waste Water Treatment

The principal objective of wastewater treatment is generally to allow human and industrial effluents to be disposed of without danger to human health or unacceptable damage to the natural environment. Irrigation with wastewater is both disposal and utilization and indeed is an effective form of wastewater disposal (as in slow-rate land treatment). However, some degree of treatment must normally be provided to raw municipal wastewater before it can be used for agricultural or landscape irrigation or for aquaculture. The quality of treated effluent used in agriculture has a great influence on the operation and performance of the wastewater-soil-plant or aquaculture system. In the case of irrigation, the required quality of effluent will depend on the crop or crops to be irrigated, the soil conditions and the system of effluent distribution adopted. Through crop restriction and selection of irrigation systems which minimize health risk, the degree of pre-application wastewater treatment can be reduced. A similar approach is not feasible in aquaculture systems and more reliance will have to be placed on control through wastewater treatment.

The most appropriate wastewater treatment to be applied before effluent use in agriculture is that which will produce an effluent meeting the recommended microbiological and chemical quality guidelines both at low cost and with minimal operational and maintenance requirements (Arar 1988). Adopting as low a level of treatment as possible is especially desirable in developing countries, not only from the point of view of cost but also in acknowledgement of the difficulty of operating complex systems reliably. In many locations it will be better to design the reuse system to accept a low-grade of effluent rather than to rely on advanced treatment processes producing a reclaimed effluent which continuously meets a stringent quality standard.

Nevertheless, there are locations where a higher-grade effluent will be necessary and it is essential that information on the performance of a wide range of wastewater treatment technology should be available. The design of wastewater treatment plants is usually based on the need to reduce organic and suspended solids loads to limit pollution of the environment. Pathogen removal has very rarely been considered an objective but, for reuse of effluents in agriculture, this must now be of primary concern and processes should be selected and designed accordingly (Hillman 1988). Treatment to remove wastewater constituents that may be toxic or harmful to crops, aquatic plants (macrophytes) and fish is technically possible but is not normally economically feasible. Unfortunately, few performance data on wastewater treatment plants in developing countries are available and even then they do not normally include effluent quality parameters of importance in agricultural use.

The short-term variations in wastewater flows observed at municipal wastewater treatment plants follow a diurnal pattern. Flow is typically low during the early morning hours, when water consumption is lowest and when the base flow consists of infiltration-inflow and small quantities of sanitary wastewater. A first peak of flow generally occurs in the late morning, when wastewater from the peak morning water use reaches the treatment plant, and a second peak flow usually occurs in the evening. The relative magnitude of the peaks and the times at which they occur vary from country to country and with the size of the community and the length of the sewers. Small communities with small sewer systems have a much higher ratio of peak flow to average flow than do large communities. Although the magnitude of peaks is attenuated as wastewater passes through a treatment plant, the daily variations in flow from a municipal treatment plant make it impracticable, in most cases, to irrigate with effluent directly from the treatment plant. Some form of flow equalization or short-term storage of treated effluent is necessary to provide a relatively constant supply of reclaimed water for efficient irrigation, although additional benefits result from storage.

Conventional wastewater treatment processes


1 Preliminary treatment
2 Primary treatment
3 Secondary treatment
4 Tertiary and/or advanced treatment
5 Disinfection
6 Effluent storage
7 Reliability of conventional and advanced wastewater treatment


Conventional wastewater treatment consists of a combination of physical, chemical, and biological processes and operations to remove solids, organic matter and, sometimes, nutrients from wastewater. General terms used to describe different degrees of treatment, in order of increasing treatment level, are preliminary, primary, secondary, and tertiary and/or advanced wastewater treatment. In some countries, disinfection to remove pathogens sometimes follows the last treatment step. A generalized wastewater treatment diagram is shown in Figure 5.

1 Preliminary treatment

The objective of preliminary treatment is the removal of coarse solids and other large materials often found in raw wastewater. Removal of these materials is necessary to enhance the operation and maintenance of subsequent treatment units. Preliminary treatment operations typically include coarse screening, grit removal and, in some cases, comminution of large objects. In grit chambers, the velocity of the water through the chamber is maintained sufficiently high, or air is used, so as to prevent the settling of most organic solids. Grit removal is not included as a preliminary treatment step in most small wastewater treatment plants. Comminutors are sometimes adopted to supplement coarse screening and serve to reduce the size of large particles so that they will be removed in the form of a sludge in subsequent treatment processes. Flow measurement devices, often standing-wave flumes, are always included at the preliminary treatment stage.

2 Primary treatment

The objective of primary treatment is the removal of settleable organic and inorganic solids by sedimentation, and the removal of materials that will float (scum) by skimming. Approximately 25 to 50% of the incoming biochemical oxygen demand (BOD5), 50 to 70% of the total suspended solids (SS), and 65% of the oil and grease are removed during primary treatment. Some organic nitrogen, organic phosphorus, and heavy metals associated with solids are also removed during primary sedimentation but colloidal and dissolved constituents are not affected. The effluent from primary sedimentation units is referred to as primary effluent. Table 1 provides information on primary effluent from three sewage treatment plants in California along with data on the raw wastewaters.

Table 1: QUALITY OF RAW WASTEWATER AND PRIMARY EFFLUENT AT SELECTED TREATMENT PLANTS IN CALIFORNIA

Quality parameters (mg/l, except as otherwise indicated)

City of Davis

San Diego

Los Angeles County Joint Plant

Raw wastewater

Primary effluent

Raw wastewater

Primary effluent

Raw wastewater

Primary effluent

Biochemical oxygen demand,BOD5

112

73

184

134

204

Total organic carbon

63.8

40.6

64.8

52.3

Suspended solids

185

72

200

109

219

Total nitrogen

43.4

34.7

NH3-N

35.6

26.2

21.0

20.0

39.5

NO-N

0

0

Org-N

7.8

8.5

14.9

Total phosphorus

7.5

10.2

11.2

Ortho-P

7.5

11.2

pH (unit)

7.7

7.3

7.3

Cations:
Ca

78.8

Mg

25.6

Na

357

359

K

19

19

Anions:
SO4

160

270

Cl

120

397

Electrical conductivity, dS/m

2.52

2.34

2.19

Total dissolved solids

829

821

1404

1406

Soluble sodium percentage, %

70.3

Sodium adsorption ratio

8.85

6.8

Boron (B)

1.68

1.5

Alkalinity (CaCO3)

322

332

Hardness (CaCO3)

265

In many industrialized countries, primary treatment is the minimum level of preapplication treatment required for wastewater irrigation. It may be considered sufficient treatment if the wastewater is used to irrigate crops that are not consumed by humans or to irrigate orchards, vineyards, and some processed food crops. However, to prevent potential nuisance conditions in storage or flow-equalizing reservoirs, some form of secondary treatment is normally required in these countries, even in the case of non-food crop irrigation. It may be possible to use at least a portion of primary effluent for irrigation if off-line storage is provided.

Primary sedimentation tanks or clarifiers may be round or rectangular basins, typically 3 to 5 m deep, with hydraulic retention time between 2 and 3 hours. Settled solids (primary sludge) are normally removed from the bottom of tanks by sludge rakes that scrape the sludge to a central well from which it is pumped to sludge processing units. Scum is swept across the tank surface by water jets or mechanical means from which it is also pumped to sludge processing units.

In large sewage treatment plants (> 7600 m3/d in the US), primary sludge is most commonly processed biologically by anaerobic digestion. In the digestion process, anaerobic and facultative bacteria metabolize the organic material in sludge (see Example 3), thereby reducing the volume requiring ultimate disposal, making the sludge stable (nonputrescible) and improving its dewatering characteristics. Digestion is carried out in covered tanks (anaerobic digesters), typically 7 to 14 m deep. The residence time in a digester may vary from a minimum of about 10 days for high-rate digesters (well-mixed and heated) to 60 days or more in standard-rate digesters. Gas containing about 60 to 65% methane is produced during digestion and can be recovered as an energy source. In small sewage treatment plants, sludge is processed in a variety of ways including: aerobic digestion, storage in sludge lagoons, direct application to sludge drying beds, in-process storage (as in stabilization ponds), and land application.

3 Secondary treatment

The objective of secondary treatment is the further treatment of the effluent from primary treatment to remove the residual organics and suspended solids. In most cases, secondary treatment follows primary treatment and involves the removal of biodegradable dissolved and colloidal organic matter using aerobic biological treatment processes. Aerobic biological treatment (see Box) is performed in the presence of oxygen by aerobic microorganisms (principally bacteria) that metabolize the organic matter in the wastewater, thereby producing more microorganisms and inorganic end-products (principally CO2, NH3, and H2O). Several aerobic biological processes are used for secondary treatment differing primarily in the manner in which oxygen is supplied to the microorganisms and in the rate at which organisms metabolize the organic matter.

High-rate biological processes are characterized by relatively small reactor volumes and high concentrations of microorganisms compared with low rate processes. Consequently, the growth rate of new organisms is much greater in high-rate systems because of the well controlled environment. The microorganisms must be separated from the treated wastewater by sedimentation to produce clarified secondary effluent. The sedimentation tanks used in secondary treatment, often referred to as secondary clarifiers, operate in the same basic manner as the primary clarifiers described previously. The biological solids removed during secondary sedimentation, called secondary or biological sludge, are normally combined with primary sludge for sludge processing.

Common high-rate processes include the activated sludge processes, trickling filters or biofilters, oxidation ditches, and rotating biological contactors (RBC). A combination of two of these processes in series (e.g., biofilter followed by activated sludge) is sometimes used to treat municipal wastewater containing a high concentration of organic material from industrial sources.

i. Activated Sludge

In the activated sludge process, the dispersed-growth reactor is an aeration tank or basin containing a suspension of the wastewater and microorganisms, the mixed liquor. The contents of the aeration tank are mixed vigorously by aeration devices which also supply oxygen to the biological suspension . Aeration devices commonly used include submerged diffusers that release compressed air and mechanical surface aerators that introduce air by agitating the liquid surface. Hydraulic retention time in the aeration tanks usually ranges from 3 to 8 hours but can be higher with high BOD5 wastewaters. Following the aeration step, the microorganisms are separated from the liquid by sedimentation and the clarified liquid is secondary effluent. A portion of the biological sludge is recycled to the aeration basin to maintain a high mixed-liquor suspended solids (MLSS) level. The remainder is removed from the process and sent to sludge processing to maintain a relatively constant concentration of microorganisms in the system. Several variations of the basic activated sludge process, such as extended aeration and oxidation ditches, are in common use, but the principles are similar.

ii. Trickling Filters

A trickling filter or biofilter consists of a basin or tower filled with support media such as stones, plastic shapes, or wooden slats. Wastewater is applied intermittently, or sometimes continuously, over the media. Microorganisms become attached to the media and form a biological layer or fixed film. Organic matter in the wastewater diffuses into the film, where it is metabolized. Oxygen is normally supplied to the film by the natural flow of air either up or down through the media, depending on the relative temperatures of the wastewater and ambient air. Forced air can also be supplied by blowers but this is rarely necessary. The thickness of the biofilm increases as new organisms grow. Periodically, portions of the film ‘slough off the media. The sloughed material is separated from the liquid in a secondary clarifier and discharged to sludge processing. Clarified liquid from the secondary clarifier is the secondary effluent and a portion is often recycled to the biofilter to improve hydraulic distribution of the wastewater over the filter.

iii. Rotating Biological Contactors

Rotating biological contactors (RBCs) are fixed-film reactors similar to biofilters in that organisms are attached to support media. In the case of the RBC, the support media are slowly rotating discs that are partially submerged in flowing wastewater in the reactor. Oxygen is supplied to the attached biofilm from the air when the film is out of the water and from the liquid when submerged, since oxygen is transferred to the wastewater by surface turbulence created by the discs’ rotation. Sloughed pieces of biofilm are removed in the same manner described for biofilters.

High-rate biological treatment processes, in combination with primary sedimentation, typically remove 85 % of the BOD5 and SS originally present in the raw wastewater and some of the heavy metals. Activated sludge generally produces an effluent of slightly higher quality, in terms of these constituents, than biofilters or RBCs. When coupled with a disinfection step, these processes can provide substantial but not complete removal of bacteria and virus. However, they remove very little phosphorus, nitrogen, non-biodegradable organics, or dissolved minerals. Data on effluent quality from selected secondary treatment plants in California are presented in Table 2.

Table 2: QUALITY OF SECONDARY EFFLUENT AT SELECTED WASTEWATER TREATMENT PLANTS IN CALIFORNIA

Quality parameter (mg/I except as otherwise indicated)

Plant location

Trickling filters

Activated sludge

Chino Basin MWD (No. 1)

Chino Basin MWD (No. 2)

Santa Rosa Laguna

Montecito Sanitary District

Biochemical oxygen demand, BOD5

21

8

11

Chemical oxygen demand

27

Suspended solids

18

26

13

Total nitrogen

NH3-N

25

11

10

1.4

NO3-N

0.7

19

8

5

Org-N

1.7

Total phosphorus

12.5

Ortho-P

3.4

pH (unit)

7.6

Cations:
Ca

43

55

41

82

Mg

12

18

18

33

Na

83

102

94

K

17

20

11

Anions:
HCO3

293

192

165

SO4

85

143

66

192

Cl

81

90

121

245

Electrical conductivity dS/m

1.39

Total dissolved solids

476

591

484

940

Sodium adsorption ratio

2.9

3.1

3.9

3.7

Boron (B)

0.7

0.6

0.6

0.7

Alkalinity (CaCO3)

226

Total Hardness (CaCO3)

156

200

175

265

Source: Asano and Tchobanoglous (1987)

4 Tertiary and/or advanced treatment

Tertiary and/or advanced wastewater treatment is employed when specific wastewater constituents which cannot be removed by secondary treatment must be removed. As shown in Figure 3, individual treatment processes are necessary to remove nitrogen, phosphorus, additional suspended solids, refractory organics, heavy metals and dissolved solids. Because advanced treatment usually follows high-rate secondary treatment, it is sometimes referred to as tertiary treatment. However, advanced treatment processes are sometimes combined with primary or secondary treatment (e.g., chemical addition to primary clarifiers or aeration basins to remove phosphorus) or used in place of secondary treatment (e.g., overland flow treatment of primary effluent).

An adaptation of the activated sludge process is often used to remove nitrogen and phosphorus and an example of this approach is the 23 Ml/d treatment plant commissioned in 1982 in British Columbia, Canada (World Water 1987). The Bardenpho Process adopted is shown in simplified form in Figure 6. Effluent from primary clarifiers flows to the biological reactor, which is physically divided into five zones by baffles and weirs. In sequence these zones are: (i) anaerobic fermentation zone (characterized by very low dissolved oxygen levels and the absence of nitrates); (ii) anoxic zone (low dissolved oxygen levels but nitrates present); (iii) aerobic zone (aerated); (iv) secondary anoxic zone; and (v) final aeration zone. The function of the first zone is to condition the group of bacteria responsible for phosphorus removal by stressing them under low oxidation-reduction conditions, which results in a release of phosphorus equilibrium in the cells of the bacteria. On subsequent exposure to an adequate supply of oxygen and phosphorus in the aerated zones, these cells rapidly accumulate phosphorus considerably in excess of their normal metabolic requirements. Phosphorus is removed from the system with the waste activated sludge.

 

Most of the nitrogen in the influent is in the ammonia form, and this passes through the first two zones virtually unaltered. In the third aerobic zone, the sludge age is such that almost complete nitrification takes place, and the ammonia nitrogen is converted to nitrites and then to nitrates. The nitrate-rich mixed liquor is then recycled from the aerobic zone back to the first anoxic zone. Here denitrification occurs, where the recycled nitrates, in the absence of dissolved oxygen, are reduced by facultative bacteria to nitrogen gas, using the influent organic carbon compounds as hydrogen donors. The nitrogen gas merely escapes to atmosphere. In the second anoxic zone, those nitrates which were not recycled are reduced by the endogenous respiration of bacteria. In the final re-aeration zone, dissolved oxygen levels are again raised to prevent further denitrification, which would impair settling in the secondary clarifiers to which the mixed liquor then flows.

An experimentation programme on this plant demonstrated the importance of the addition of volatile fatty acids to the anaerobic fermentation zone to achieve good phosphorus removal. These essential short-chain organics (mainly acetates) are produced by the controlled fermentation of primary sludge in a gravity thickener and are released into the thickener supernatent, which can be fed to the head of the biological reactor. Without this supernatent return flow, overall phosphorus removal quickly dropped to levels found in conventional activated sludge plants. Performance data over three years have proved that, with thickener supernatent recycle, effluent quality median values of 0.5-1.38 mg/l Ortho-P, 1.4-1.6 mg/l Total nitrogen and 1.4-2.0 mg/l nitrate-N are achievable. This advanced biological wastewater treatment plant cost only marginally more than a conventional activated sludge plant but nevertheless involved considerable investment. Furthermore, the complexity of the process and the skilled operation required to achieve consistent results make this approach unsuitable for developing countries.

In many situations, where the risk of public exposure to the reclaimed water or residual constituents is high, the intent of the treatment is to minimize the probability of human exposure to enteric viruses and other pathogens. Effective disinfection of viruses is believed to be inhibited by suspended and colloidal solids in the water, therefore these solids must be removed by advanced treatment before the disinfection step. The sequence of treatment often specified in the United States is: secondary treatment followed by chemical coagulation, sedimentation, filtration, and disinfection. This level of treatment is assumed to produce an effluent free from detectable viruses. Effluent quality data from selected advanced wastewater treatment plants in California are reported in Table 14. In Near East countries adopting tertiary treatment, the tendency has been to introduce pre-chlorination before rapid-gravity sand filtration and post-chlorination afterwards. A final ozonation treatment after this sequence has been considered in at least one country.

5 Disinfection

Disinfection normally involves the injection of a chlorine solution at the head end of a chlorine contact basin. The chlorine dosage depends upon the strength of the wastewater and other factors, but dosages of 5 to 15 mg/l are common. Ozone and ultra violet (uv) irradiation can also be used for disinfection but these methods of disinfection are not in common use. Chlorine contact basins are usually rectangular channels, with baffles to prevent short-circuiting, designed to provide a contact time of about 30 minutes. However, to meet advanced wastewater treatment requirements, a chlorine contact time of as long as 120 minutes is sometimes required for specific irrigation uses of reclaimed wastewater. The bactericidal effects of chlorine and other disinfectants are dependent upon pH, contact time, organic content, and effluent temperature.

6 Effluent storage

Although not considered a step in the treatment process, a storage facility is, in most cases, a critical link between the wastewater treatment plant and the irrigation system. Storage is needed for the following reasons:

i. To equalize daily variations in flow from the treatment plant and to store excess when average wastwater flow exceeds irrigation demands; includes winter storage.ii. To meet peak irrigation demands in excess of the average wastewater flow.

iii. To minimize the effects of disruptions in the operations of the treatment plant and irrigation system. Storage is used to provide insurance against the possibility of unsuitable reclaimed wastewater entering the irrigation system and to provide additional time to resolve temporary water quality problems.

Table 3: EFFLUENT QUALITY DATA FROM SELECTED ADVANCED WASTEWATER TREATMENT PLANTS IN CALIFORNIA1

Quality parameter (mg/l except as otherwise indicated)

Plant location

Long Beach

Los Coyotes

Pomona

Dublin San Ramon

City of Livermore

Simi Valley CSD

Biochemical oxygen demand, BOD5

5

9

4

2

3

4

Suspended solids

5

1

Total nitrogen

19

NH3-N

3.3

13.6

11.4

0.1

1.0

16.6

NO3-N

15.4

1.1

3

19.0

21.3

0.4

Org-N

2.2

2.5

1.3

0.2

2.6

2.3

Total phosphorus

Ortho-P

30.8

23.9

21.7

28.5

16.5

pH (unit)

6.8

7.1

Oil and grease

3.1

Total coliform bacteria, MPN/100 ml

2

4

Cations:
Ca

54

65

58

Mg

17

18

14

Na

186

177

109

168

178

K

16

18

12

Anions:
SO4

212

181

123

202

Cl

155

184

105

147

178

110

Electrical conductivity, dS/m

1.35

1.44

1.02

1.27

1.25

Total dissolved solids

867

827

570

585

Soluble sodium, %

63.2

59.2

51.7

Sodium adsorption ratio

5.53

4.94

3.37

4.6

5.7

Boron (B)

0.95

0.95

0.66

1.33

0.6

Alkalinity (CaCO3)

256

197

150

Total Hardness (CaCO3)

212

242

206

254

184

1Advanced wastewater treatment in these plants follows high rate secondary treatment and includes addition of chemical coagulants (alum + polymer) as necessary followed by filtration through sand or activated carbon granular medium filters.

EE-Unit-III Eutrophication

What are the sources of nutrients causing eutrophication of lakes and reservoirs? There are many sources. All activities in the entire drainage area of a lake or reservoir are reflected directly or indirectly in the water quality of these water bodies. A lake or reservoir may, however, be naturally eutrophied when situated in a fertile area with naturally nutrient enriched soils. In many lakes and reservoirs wastewater is the main source since untreated wastewater or wastewater treated only by a conventional mechanical- biological methods still contains nitrogen (25-40 mg per liter) and phosphorus (6-10 mg per liter). Both nitrogen and phosphorus can be removed by well-known technology – phosphorus by addition of a chemical that precipitates phosphate though a chemical reaction, and nitrogen usually by biological means through micro- organism activity. Nitrogen costs more money and also, technically speaking, is more difficult to remove than phosphorus.

 General view of a wetland.

Drainage water from agricultural land also contains phosphorus and nitrogen. It usually has much more nitrogen because phosphorus is usually bound to soil components. Extensive use of fertilizers results in significant concentrations of nutrients particularly nitrogen, in agricultural runoff. If eroded soil reaches the lake, both phosphorus and the nitrogen in the soil contribute to eutrophication. Erosion is often caused by deforestation which also results from unwise planning and management of the resource.

Wetlands are increasingly used to solve the problem of diffuse pollution from agriculture which cause eutrophication (Photo 20). Nitrate is converted in wetlands to free nitrogen and released to the air. This is not harmful, as free nitrogen compromises about 4/ 5ths of the atmosphere. Phosphorus is adsorbed by wetland soils and, like nitrogen, is taken up by the plants. Both nitrogen and phosphorus may therefore be removed by wetlands. In addition, it is often also necessary to control fertilizer usage in agricultural practices as the majority may end up in the drainage area, if the diffuse pollution from nutrients is to be reduced sufficiently to improve water quality.

 Aerial view of fish pens in Laguna de Bay, Philippines.

Rain water contains phosphorus and nitrogen from air pollution. As nitrogen is more mobile in the atmosphere than phosphorus, it is usually over 20 times more concentrated than phosphorus. Nitrogen can only be reduced in rain water by extensive controls of the air pollution in the entire region. One can safely say that the main sources of pollution in the atmosphere are from industries and automobile exhaust without proper filtering systems.

When lakes are used for aquaculture, excess fish food pollutes the water as complete use of the food cannot be achieved (Photo 21). Nitrogen and phosphorus present in the excess food is dissolved or suspended in the water. The use of lakes for aquaculture therefore needs careful environmental planning and management practices by the owners and workers.

The sediment of a lake -its muddy bottom layer -contains relatively high concentrations of nitrogen and phosphorus. These can be released to water, particularly under conditions of low oxygen concentrations. The nutrients in the sediment come from the past settling of algae and dead organic matter. The nutrients released from sediments are referred to as the lake’s internal loading.

Figure 5 sketches the sources of nutrients: externally from wastewater, agricultural drainage water, erosion and rain, and internally from activities in the lake itself, e.g. aquaculture and sediment release.

It is possible but very expensive to remove the upper nutrient-rich layer of sediment. Covering sediments with clay to seal them and thereby reduce internal loading has also been tried. Even when nutrients are removed in large amounts from wastewater, agricultural drainage water and rain, it often takes much time before nutrient concentrations fall in the upper sediment layer because they are still present in the water environment. Early reduction or elimination of nutrient sources is therefore very important.

Major sources of nutrients in lakes.

Lakes and reservoirs can be classified according to the extent of their eutrophication (or nutrients enrichment) into four main classes: oligotrophic, mesotrophic, eutrophic and hypereutrophic (Table 3). This classification results from extensive examination of eutrophication in countries within the Organization for Economic Cooperation and Development (OECD) in the 1970s and early 1980s. It is based on concentrations of phosphorus, nitrogen and chlorophyll a (the green plant pigment needed in photosynthesis). Chlorophyll a roughly indicates the concentration of plant biomass (on average 1% of algae biomass is chlorophyll a).

Factors that limit Eutrophication

Table 4 shows the average composition of freshwater plants on a wet basis (when they are not dried): the plants require all listed components in the approximate percentages indicated. Generally, nitrogen (0.7%) and/or phosphorus (0.09%) are usually the first components depleted when plants form following photosynthesis. These two nutrients are less abundant in water than other elements needed, relative to their composition in plants. About eight times more nitrogen is required than phosphorus. Phosphorus thus limits eutrophication if nitrogen is more than eight times as abundant as phosphorus, while nitrogen limits eutrophication if its concentration is less than eight times as abundant as phosphorus.

Growth of blue-green algae on the shore of a lake.

Untreated wastewater and wastewater treated bymechanical-biologicalmethods contain about 32mg/L nitrogen and about 8 mg/L phosphorus on average. In a lake heavily loaded with wastewater, eutrophication is limited by nitrogen, as the nitrogen concentration in the discharged wastewater is only four times the phosphorus concentration. Such lakes often display extensive blooms of blue-green algae as unsightly surface scum (Photo 22). Some species of blue-green algae use nitrogen directly from the air and grow, although dissolved nitrogen is limiting. Lakes that receive natural tributaries and drainage water from agriculture, however, have high nitrogen concentrations and are therefore usually limited by phosphorus.

The central question is not to determine which nutrient is limiting but to determine which nutrient can most easily be made limiting. As phosphorus is more easily and less expensively removed from wastewater than nitrogen, in many cases (but not all) the best environmental management strategy for lakes and reservoirs is to remove as much phosphorus as possible from wastewater.

EE-Unit-III Determination of DO,BOD,COD

What is the Winkler Method?

The Winkler Method is a technique used to measure dissolved oxygen in freshwater systems. Dissolved oxygen is used as an indicator of the health of a water body, where higher dissolved oxygen concentrations are correlated with high productivity and little pollution. This test is performed on-site, as delays between sample collection and testing may result in an alteration in oxygen content.

How does the Winkler Method Work?

The Winkler Method uses titration to determine dissolved oxygen in the water sample. A sample bottle is filled completely with water (no air is left to skew the results). The dissolved oxygen in the sample is then “fixed” by adding a series of reagents that form an acid compound that is then titrated with a neutralizing compound that results in a color change. The point of color change is called the “endpoint,” which coincides with the dissolved oxygen concentration in the sample. Dissolved oxygen analysis is best done in the field, as the sample will be less altered by atmospheric equilibration.

Applications

Dissolved oxygen analysis can be used to determine:

  • the health or cleanliness of a lake or stream,
  • the amount and type of biomass a freshwater system can support,
  • the amount of decomposition occurring in the lake or stream.

How to- Sample Collection, Preparation, Analytical Protocols, and Concerns

Winkler Method for measuring dissolved oxygenshow

Dissolved oxygen should be measured as quickly and carefully as possible. Ideally, samples should be measured in the field immediately after collection.

Reagent List:

  • 2ml Manganese sulfate
  • 2ml alkali-iodide-azide
  • 2ml concentrated sulfuric acid
  • 2ml starch solution
  • Sodium thiosulfate

These reagents are available in dissolved oxygen field kits, such as those made by the Hach Company. Please use caution when using these reagents, as they can be hazardous to one’s health.

Procedure:

  1. Carefully fill a 300-mL glass Biological Oxygen Demand (BOD) stoppered bottle brim-full with sample water.
  2. Immediately add 2mL of manganese sulfate to the collection bottle by inserting the calibrated pipette just below the surface of the liquid. (If the reagent is added above the sample surface, you will introduce oxygen into the sample.) Squeeze the pipette slowly so no bubbles are introduced via the pipette.
  3. Add 2 mL of alkali-iodide-azide reagent in the same manner.
  4. Stopper the bottle with care to be sure no air is introduced. Mix the sample by inverting several times. Check for air bubbles; discard the sample and start over if any are seen. If oxygen is present, a brownish-orange cloud of precipitate or floc will appear. When this floc has settle to the bottom, mix the sample by turning it upside down several times and let it settle again.
  5. Add 2 mL of concentrated sulfuric acid via a pipette held just above the surface of the sample. Carefully stopper and invert several times to dissolve the floc. At this point, the sample is “fixed” and can be stored for up to 8 hours if kept in a cool, dark place. As an added precaution, squirt distilled water along the stopper, and cap the bottle with aluminum foil and a rubber band during the storage period.
  6. In a glass flask, titrate 201 mL of the sample with sodium thiosulfate to a pale straw color. Titrate by slowly dropping titrant solution from a calibrated pipette into the flask and continually stirring or swirling the sample water.
  7. Add 2 mL of starch solution so a blue color forms.
  8. Continue slowly titrating until the sample turns clear. As this experiment reaches the endpoint, it will take only one drop of the titrant to eliminate the blue color. Be especially careful that each drop is fully mixed into the sample before adding the next. It is sometimes helpful to hold the flask up to a white sheet of paper to check for absence of the blue color.
  9. The concentration of dissolved oxygen in the sample is equivalent to the number of milliliters of titrant used. Each mL of sodium thiosulfate added in steps 6 and 8 equals 1 mg/L dissolved oxygen.

Results Analysis

The total number of milliliters of titrant used in steps 6-8 equals the total dissolved oxygen in the sample in mg/L. Oxygen saturation is temperature dependent – gas is more soluble in cold waters, hence cold waters generally have higher dissolved oxygen concentrations. Dissolved oxygen also depends on salinity and elevation, or partial pressure.

Temperature-Oxygen Saturation Relationship
Biochemical Oxygen Demand

The test for Biochemical Oxygen Demand is especially important in waste water treatment, food manufacturing, and filtration facilities where the concentration of oxygen is crucial to the overall process and end products. High concentrations of dissolved oxygen (DO) predict that oxygen uptake by microorganisms is low along with the required break down of nutrient sources in the medium (sample). On the other hand, low DO readings signify high oxygen demand from microorganisms, and can lead to possible sources of contamination depending on the process.

Performing the test for Biochemical Oxygen Demand requires a significant time commitment for preparation and analysis. The entire process requires five days, and it is not until the last day where data is collected and evaluated. During this time, samples are initially seeded with microorganisms and supplied with a carbon nutrient source of glucose-glutamic acid. The sample is then introduced to an environment suitable for bacterial growth at reproducible temperatures, nutrient sources, and light within a 20 degree Celsius incubator such that oxygen will be consumed. Quality controls, standards and dilutions are also run to test for accuracy and precision. Determination of the dissolved oxygen within the sample can be determined through Winkler titration methods. The difference in initial DO readings (prior to incubation) and final DO readings (after 5 days of incubation) predicts the BOD of the sample. A suitable detection limit as per environmental QC is 1 mg/L.

Chemical Oxygen Demand

In recent times, with the increase of pollution by discharging large amount of various chemicals, oxidisable organic substances of different matter enter in the aquatic system. BOD values alone does not give a clear picture of organic matter contend of the water sample. In addition, the presence of various toxicant in the sample. In addition, the presence of various toxicants in the sample may severely affect the validity of BOD test. Hence chemical oxygen demand (COD) test is a better estimate of organic matter which needs no sophistication and is time saving. However COD that is the oxygen consumed (OC) does not differentiate the stable organic matter from the unstable form, therefore the COD value are not directly comparable to that of BOD.

 

The amount of organic matter in water is estimated based on their oxidisability by chemical oxidants, such as potassium permanganate or potassium dichromate. For many years, the potassium permanganate was used as oxidizing agent for measuring chemical oxygen demand. But the oxidizing capacity of potassium permanganate varied widely. Nowadays, Potassium dichromate is used instead of potassium permanganate because it is more effective, relatively cheap, easy to purify and is able to oxidize almost all organic compounds.

In this method, a fixed volume of oxidant (here potassium dichromate) is added to the water sample. The organic matter present in the water sample is first oxidized with known volume of potassium dichromate and then excess of oxygen is allowed to react with potassium iodide to liberate iodine in amounts equal to the excess oxygen, which is estimated titrimetrically with sodium thiosulphate as an indicator.

 

EE-Unit-III Water Contaminants

The Safe Drinking Water Act defines the term “contaminant” as meaning any physical, chemical, biological, or radiological substance or matter in water. Therefore, the law defines “contaminant” very broadly as being anything other than water molecules. Drinking water may reasonably be expected to contain at least small amounts of some contaminants. Some drinking water contaminants may be harmful if consumed at certain levels in drinking water while others may be harmless. The presence of contaminants does not necessarily indicate that the water poses a health risk.

The following are general categories of drinking water contaminants and examples of each:

  • Physical contaminants primarily impact the physical appearance or other physical properties of water. Examples of physical contaminants are sediment or organic material suspended in the water of lakes, rivers and streams from soil erosion.
  • Chemical contaminants are elements or compounds. These contaminants may be naturally occurring or man-made. Examples of chemical contaminants include nitrogen, bleach, salts, pesticides, metals, toxins produced by bacteria, and human or animal drugs.
  • Biological contaminants are organisms in water. They are also referred to as microbes or microbiological contaminants. Examples of biological or microbial contaminants include bacteria, viruses, protozoan, and parasites.
  • Radiological contaminants are chemical elements with an unbalanced number of protons and neutrons resulting in unstable atoms that can emit ionizing radiation. Examples of radiological contaminants include cesium, plutonium and uranium.

EE-Unit-III Water pollution

Water pollution is the contamination of natural water bodies by chemical, physical, radioactive or pathogenic microbial substances. Adverse alteration of water quality presently produces large scale illness and deaths, accounting for approximately 50 million deaths per year worldwide, most of these deaths occurring in Africa and Asia. In China, for example, about 75 percent of the population (or 1.1 billion people) are without access to unpolluted drinking water, according to China’s own standards.[1]Widespread consequences of water pollution upon ecosystems include species mortality, biodiversityreduction and loss of ecosystem services. Some consider that water pollution may occur from natural causes such as sedimentation from severe rainfall events; however, natural causes, including volcanic eruptions and algae blooms from natural causes constitute a minute amount of the instances of world water pollution. The most problematic of water pollutants are microbes that induce disease, since their sources may be construed as natural, but a preponderance of these instances result from human intervention in the environment or human overpopulation phenomena.

Classes of water pollutants

Chemical water pollutants are generally atoms or molecules, which have been discharged into natural water bodies, usually by activities of humans. Common examples of such chemical water pollutants are mercury emanating from mining activity, certain nitrogen compounds used in agriculturechlorinated organic molecules arising from sewage or water treatment plants [2] or various acids which are the externalities of various manufacturing activities.

Physical water pollutants are either (a) much larger particles or (b) physical factors such as temperature change, both of which while not typically toxic, cause a variety of harmful effects. The most obvious of physical pollutants are (a) excessive sediment load, mostly arising from over-intense land use practices and (b) rubbish discarded from human manufacturing activity (e.g. plastic bags, bottles). While these materials are not so harmful to human health as chemicals or pathogens, they comprise the majority of visual impact of water pollution. In the case of thermal pollution, these point source discharges typically affect the metabolism of aquatic fauna in adverse ways.

Radioactive substances are really merely a special sub-class of chemical pollutants, and by mass represent the smallest of the contributors to water pollution; however, their potential for harm allows recognition as a separate class. In fact, most discharge of radioactivity is not from the negligible escape from nuclear power plants, but rather arises from agricultural practices such as tobacco farming, where radioactive contamination of phosphate fertilizer is a common method of introduction of radioactive materials into the environment.

Common pathogenic microbes introduced into natural water bodies are pathogens from untreated sewage or surface runoff from intensive livestock grazing. One of the most common disease agents is Giardia lamblia, a parasitic protozoan common in fecal material of many fauna including humans; this microbe is particularly insidious, due to its resistance to conventional sewage treatment. This and other protozoans and bacteria are important causes of illness and mortality in developing countries where population density, water scarcity and inadequate sewage treatment combine to occasion widespread parasitic and bacterial disease.

Sources

Water pollutant sources can be grouped into two super categories: (a) point sources which can be attributed to discrete discharge from a factory or sewage outfall and (b) non-point sources that include agricultural runoff, urban storm water runoff and other area wide sources.

Many of the common inorganic chemical water pollutants are produced by non-point sources, chiefly relating to intensive agriculture and high-density urban areas. Specific inorganic chemicals and their major sources are: monopotassium phosphate, ammonium nitrate and a host of related phosphate and nitrogen compounds used in agricultural fertilizers; heavy metals (present in urban runoff and mine tailings area runoff). However, some inorganics such as chlorine and related derivatives are produced chiefly from point sources, ironically employed in water treatment facilities. Moreover, some of the large dischargers of heavy metals to aquatic media are fixed point industrial plants.

Improper storage and use of automotive fluids produce common organic chemicals causing water pollution are: methanol and ethanol (present in wiper flluid); gasoline and oil compounds such as octane, nonane (overfilling of gasoline tanks); most of these foregoing discharges are considered non-point sources since their pathway to watercourses is mainly overland flow. However, leaking underground and above ground storage tanks can be considered point sources for some of these same chemicals, and even more toxic organics such as perchloroethylene. Grease and fats (higher chain length carbon molecules such as present in auto lubrication and restaurant effluent can be either point or non-point sources depending upon whether the restaurant releases grease into the wastewater collection system (point source) or disposes of such organics on the exterior ground surface or transports to large landfills, both of which last two cases lead to non-point release to water systems.

The most significant physical pollutant is excess sediment in runoff from agricultural plots, clearcut forests, improperly graded slopes, urban streets and other poorly managed lands, especially when steep slopes or lands near streams are involved. Other physical pollutants include a variety of plastic refuse products such as packaging materials; the most pernicious of these items are ring shaped objects that can trap or strangle fish and other aquatic fauna. Other common physical objects are timber slash debris, waste paper and cardboard. Finally power plants and other industrial facilities that use natural water bodies for cooling are the main sources of thermal pollution.

Common pathogenic microbes, in addition to G. lamblia, are: species of the genus Salmonella (which variously cause typhoid fever and food-borne illnesses); species in the genus Cryptosporidium, which are fecal-oral route parasites often transmitted as water pollutants and are associated with inadequate sanitation; parasitic worms that live inside faunal digestive systems for part of their life cycle (This widespread syndrome is spread partially as water pollutants, with an estimated three billion people currently affected). Hepatitis A is a viral disease, one of whose pathways of transmission is water-borne.

Historic trends

captionAerial view of riverine sediment loads in Madagascar including plume influx to the Indian Ocean. Source: NASA. 2000

While it is not possible to reconstruct water pollution conditions throughout prehistory, certain facts are clear. Modern prevalence of chemical and radioactive water pollutants are clearly correlated with the population explosion and resource use of modern humans. The trends in chemical water pollution increasing from the early Holocene to the 1960s is relatively clear worldwide; starting with the advent of the Australia in the USA, a turnaround in most aspects of water quality began in the early 1970s for most of North America; similar trends in much of Europe as well as India and Madagascar began slightly later. Only in the developing countries including China and rainforest, has chemical water pollution failed to reach a peak, due to high population growth coupled with the priority of economic development above environmental protection in many cases.

Sediment loading of surface waters is a clear long term increasing problem, due to the intensification of agriculture (both for crops and livestock) and increased runoff from urbanization. In extreme cases, such as the north central highlands of coral reef massive topsoil loss has followed extreme slash-and-burn Holocene destruction from the 1970s onward. Most of this loss has resulted in ongoing heavy sediment loads to the central Madagascar river system as well as many of the nearby coastal waters in the Indian Ocean.

A more interesting situation arises with pathogenic microbes. Even though there is evidence that many of the present day water-borne microbes existed earlier in the Quaternary for humans[3] and even as early asCretaceous Period times for other fauna,[4] a case may be made that the rate of incidence of microbial pathogenic infection may be at an all time high for humans, given the overcrowding and inability to supply fresh drinking water to a large percentage of the human population in its present level of 2010. These effects are exacerbated by the likelihood that modern diseases may be mutating at a more rapid rate than historic, given the abrupt man-induced alterations of the chemical, physical and biological environment; human adaptation is not likely to be able to keep up with the pace of such disease mutation velocities; therefore, it is likely that present day water-borne pathogenic disease is at a higher rate of occurrence with present day human populations, in all world regions except for those where water pollution control, medical care and prevention are at the highest levels (e.g. USA, New Zealand, Australia, Sweden, Denmark).

Water pollution control

Non-point source control relates chiefly to land management practices in the fields of agriculture, silviculture, mining and urban design and sanitation. Agricultural practices leading to the greatest improvement of sediment control include: contour grading, avoidance of bare soils in rainy and windy seasons, polyculture farming resulting in greater vegetative cover, and increasing fallow periods. Minimization of fertilizer, pesticide and herbicide runoff is best accomplished by reducing the quantities of these materials, as well as using application times removed from periods of high precipitation. Other techniques include avoidance of highly water soluble pesticide and herbicide compounds, and use of materials that have the most rapid decay times to benign substances.

The chief water pollutants associated with mines and quarries are aqueous slurries of minute rock particles, which result from rainfall scouring exposed soils and haul roads and also from rock washing and grading activities. Runoff from metal mines and ore recovery plants is typically contaminated by the minerals present in the native rock formations. Control of this runoff is chiefly derived by controlling rapid runoff and designing mining operations to avoid tailings either on steep slopes or near streams.

In the case of urban stormwater control, the most important methods are achieved in urban planning by use of minimal net surface runoff of impermeable surfaces. This is not merely a simply geometric design issue of avoiding sprawl and minimizing paved surfaces, but also a strategy of incorporating holding ponds into landscaping and use of bioswales and permeable pavers. At an operational level, the use of native plant and xeriscape techniques reduces water use and water runoff and also minimizes need for pesticides and nutrients. In regard to street maintenance, a periodic use of streetsweeping can reduce the sediment, chemical and rubbish load into the storm sewer system.

captionDifferent examples of water pollution. ​A, C & F. Eutrophication in water bodies due to dumping of agricultural wastes and fertilizers. ​​B & D. Undesirable growth of aquatic plants and algae on water canals clogging water flow and contaminating water. E. Algal mat collected on dried polluted water body. G. Accumulation of heavy organic wastes on standing water bodies.