EE-Unit-II Ambient Air Quality Standards

National Ambient Air Quality Standards, as of 2009
Pollutant Time Weighted Average Concentration in Ambient Air
Industrial, Residential, Rural and Other Area Ecologically Sensitive Area (notified by Central Government) Methods of Measurement
SO2, μg/m3 Annual* 50 20
  • Improved West and Gaeke
  • Ultraviolet fluorescence
24 hours** 80 80
NO2, μg/m3 Annual* 40 30
  • Modified Jacob & Hochheiser (Na-Arsenite)
  • Chemiluminescence
24 hours** 80 80
PM10, μg/m3 Annual* 60 60
  • Gravimetric
  • TOEM
  • Beta attenuation
24 hours** 100 100
PM2.5, μg/m3 Annual* 40 40
  • Gravimetric
  • TOEM
  • Beta attenuation
24 hours** 60 60
O3, μg/m3 8 hours** 100 100
  • UV photometric
  • Chemiluminescence
  • Chemical Method
1 hour** 180 180
Lead (Pb), μg/m3 Annual* 0.50 0.50
  • AAS/ICP method after sampling on EMP 2000 or equivalent filter paper
  • ED-XRF using Teflon filter
24 hours** 1 1
CO, mg/m3 8 hours** 2 2
  • Non Dispersive Infra Red (NDIR) spectrosopy
1 hour** 4 4
Ammonia (NH3) μg/m3 Annual* 100 100
  • Chemiluminescence
  • Indophenol blue method
24 hours** 400 400
Benzene Annual* 5 5
  • Gas chromatography based on continuous analyzer
  • Adsorption and Desorption followed by GC analysis
Benzopyrene (BaP) – particulate phase only, ng/m3 Annual* 1 1
  • Solvent extraction followed by HPLC/GC analysis
Arsenic (As), ng/m3 Annual* 6 6
  • AAS/ICP method after sampling on EMP 2000 or equivalent filter paper
Nickel (Ni), ng/m3 Annual* 20 20
  • AAS/ICP method after sampling on EMP 2000 or equivalent filter paper
* Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

** 24 hourly or 8 hourly or 1 hourly monitored values, as applicable, shall be compiled with 98% of the time in a year. 2% of the time, theymay exceed the limits but not on two consecutive days of monitoring.

 

3.2 Monitoring

The National Air Monitoring Programme (NAMP) is a nation-wide program headed by the Central Pollution Control Board whose purpose is to monitor levels of key air pollutants, report violations, and conduct research on pollution trends. NAMP monitors levels of SO2, NO2, Suspended Particulate Matter (SPM), and Respirable Suspended Particulate Matter (RSPM / PM10) at 342 operating stations in 127 cities across India.

EE-Unit-II Air pollution Control

  • Air quality management sets the tools to control air pollutant emissions.
  • Control measurements describes the equipment, processes or actions used to reduce air pollution.
  • The extent of pollution reduction varies among technologies and measures.
  • The selection of control technologies depends on environmental, engineering, economic factors and pollutant type.

Settling Chambers

  • Settling chambers use the force of gravity to remove solid particles.
  • The gas stream enters a chamber where the velocity of the gas is reduced. Large particles drop out of the gas and are recollected in hoppers. Because settling chambers are effective in removing only larger particles, they are used in conjunction with a more efficient control device.
    Figure: Settling chambers

Cyclones

  • The general principle of inertia separation is that the particulate-laden gas is forced to change direction. As gas changes direction, the inertia of the particles causes them to continue in the original direction and be separated from the gas stream.
  • The walls of the cyclone narrow toward the bottom of the unit, allowing the particles to be collected in a hopper.
  • The cleaner air leaves the cyclone through the top of the chamber, flowing upward in a spiral vortex, formed within a downward moving spiral.

    Cyclones are efficient in removing large particles but are not as efficient with smaller particles. For this reason, they are used with other particulate control devices.

Venturi Scrubbers

  • Venturi scrubbers use a liquid stream to remove solid particles.
  • In the venturi scrubber, gas laden with particulate matter passes through a short tube with flared ends and a constricted middle.
  • This constriction causes the gas stream to speed up when the pressure is increased.
  • The difference in velocity and pressure resulting from the constriction causes the particles and water to mix and combine.
  • The reduced velocity at the expanded section of the throat allows the droplets of water containing the particles to drop out of the gas stream.
  • Venturi scrubbers are effective in removing small particles, with removal efficiencies of up to 99 percent.
  • One drawback of this device, however, is the production of wastewater.
  • Fabric filters, or baghouses, remove dust from a gas stream by passing the stream through a porous fabric. The fabric filter is efficient at removing fine particles and can exceed efficiencies of 99 percent in most applications.
  • The selection of the fiber material and fabric construction is important to baghouse performance.
  • The fiber material from which the fabric is made must have adequate strength characteristics at the maximum gas temperature expected and adequate chemical compatibility with both the gas and the collected dust.
  • One disadvantage of the fabric filter is that high-temperature gases often have to be cooled before contacting the filter medium.

Figure: Fabric filter (baghouse) components



Electrostatic Precipitators (ESPs)

  • An ESP is a particle control device that uses electrical forces to move the particles out of the flowing gas stream and onto collector plates.
  • The ESP places electrical charges on the particles, causing them to be attracted to oppositely charged metal plates located in the precipitator.
  • The particles are removed from the plates by “rapping” and collected in a hopper located below the unit.
  • The removal efficiencies for ESPs are highly variable; however, for very small particles alone, the removal efficiency is about 99 percent.
  • Electrostatic precipitators are not only used in utility applications but also other industries (for other exhaust gas particles) such as cement (dust), pulp & paper (salt cake & lime dust), petrochemicals (sulfuric acid mist), and steel (dust & fumes).


Figure: Electrostatic precipitator components


Control of gaseous pollutants from stationary sources

  • The most common method for controlling gaseous pollutants is the addition of add-on control devices to recover or destroy a pollutant.
  • There are four commonly used control technologies for gaseous pollutants:
    – Absorption,
    – Adsorption,
    – Condensation, and
    – Incineration (combustion)

Absorption

 

  • The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control of gaseous pollutant emissions.
  • Absorption is a process in which a gaseous pollutant is dissolved in a liquid.
  • As the gas stream passes through the liquid, the liquid absorbs the gas, in much the same way that sugar is absorbed in a glass of water when stirred.
  • Absorbers are often referred to as scrubbers, and there are various types of absorption equipment.
  • The principal types of gas absorption equipment include spray towers, packed columns, spray chambers, and venture scrubbers.
  • In general, absorbers can achieve removal efficiencies grater than 95 percent. One potential problem with absorption is the generation of waste-water, which converts an air pollution problem to a water pollution problem.

Adsorption

  • When a gas or vapor is brought into contact with a solid, part of it is taken up by the solid. The molecules that disappear from the gas either enter the inside of the solid, or remain on the outside attached to the surface. The former phenomenon is termed absorption (or dissolution) and the latter adsorption.
  • The most common industrial adsorbents are activated carbon, silica gel, and alumina, because they have enormous surface areas per unit weight.
  • Activated carbon is the universal standard for purification and removal of trace organic contaminants from liquid and vapor streams.
    Carbon adsorption systems are either regenerative or non-regenerative.
    – Regenerative system usually contains more than one carbon bed. As one bed actively removes pollutants, another bed is being regenerated for future use.
    – Non-regenerative systems have thinner beds of activated carbon. In a non-regenerative adsorber, the spent carbon is disposed of when it becomes saturated with the pollutant.


Condensation

  • Condensation is the process of converting a gas or vapor to liquid. Any gas can be reduced to a liquid by lowering its temperature and/or increasing its pressure.
  • Condensers are typically used as pretreatment devices. They can be used ahead of absorbers, absorbers, and incinerators to reduce the total gas volume to be treated by more expensive control equipment. Condensers used for pollution control are contact condensers and surface condensers.
  • In a contact condenser, the gas comes into contact with cold liquid.
  • In a surface condenser, the gas contacts a cooled surface in which cooled liquid or gas is circulated, such as the outside of the tube.
  • Removal efficiencies of condensers typically range from 50 percent to more than 95 percent, depending on design and applications.

Incineration

  • Incineration, also known as combustion, is most used to control the emissions of organic compounds from process industries.
  • This control technique refers to the rapid oxidation of a substance through the combination of oxygen with a combustible material in the presence of heat.
    When combustion is complete, the gaseous stream is converted to carbon dioxide and water vapor.
  • Equipment used to control waste gases by combustion can be divided in three categories:
    – Direct combustion or flaring,
    – Thermal incineration and
    – Catalytic incineration.

Direct combustor

  • Direct combustor is a device in which air and all the combustible waste gases react at the burner. Complete combustion must occur instantaneously since there is no residence chamber.
  • A flare can be used to control almost any emission stream containing volatile organic compounds. Studies conducted by EPA have shown that the destruction efficiency of a flare is about 98 percent.
    In thermal incinerators the combustible waste gases pass over or around a burner flame into a residence chamber where oxidation of the waste gases is completed. Thermal incinerators can destroy gaseous pollutants at efficiencies of greater than 99 percent when operated correctly.



    Thermal incinerator general case

    Catalytic incinerators are very similar to thermal incinerators. The main difference is that after passing through the flame area, the gases pass over a catalyst bed. A catalyst promotes oxidation at lower temperatures, thereby reducing fuel costs. Destruction efficiencies greater than 95 percent are possible using a catalytic incinerator.


    Catalytic incinerator

EE-Unit-II Temperature Inversion

There are several aspects of stable air conditions that should be understood by the firefighter. One is the relationship of surface inversions to thermal belts. In the graphic below, we again illustrate the nighttime drainage of cool air into a valley. Air in contact with the upper slopes cools and flows downslope like water, always seeking the lowest elevation. This drainage is most prominent in side canyons and draws.

Nightime cooling
Nightime cooling creates stable air

Depending on the size of the valley, the pooling of cool air may be several hundred feet deep. An inversion develops above the pool of cool air. Remember, an inversion is a layer of air in which the temperature increases with increase in altitude.

Inversion : A layer of air in which the temperature increases with increase in altitude.

Inversion example Inversion and thermal belts
Example of an inversion Inversion and thermal belt relationship

Where the inversion layer contacts the mountain slopes, we have a relatively warm area called the thermal belt. (See above graphic) At night, the temperature in this region is actually warmer than on the slopes above or below. The elevation of the thermal belt varies by locality and depends on the time of night and the size of the valley below. Its depth also varies.

Thermal belts can, and often do, have a significant effect on fire control efforts. To the firefighter, the thermal belt is an area on a mountainous slope that typically experiences the least variation in diurnal temperature, has the highest average temperature, and has the lowest average relative humidity. Overall, this area can have the highest average fire danger. Most important is the continued active burning during the night, while areas above and below the thermal belt are relatively quiet.

Thermal Belt : An area on a mountain slope that typically experiences the least variation in diurnal temperature, has the highest average temperatures, and the lowest average relative humidity.

Fire behavior can remain extreme at night in thermal belts

Subsidence

Subsidence : A slow, sinking motion of high level air over a broad area occurring in high pressure areas. The subsiding air is warmed by compression and becomes more stable.

Effects of subsidence
Effects of subsidence

Subsidence is a slow process that occurs over a period of several days. During summer and autumn, somewhat stationary, deep high-pressure cells often develop over relatively large areas of the land.

If the high-pressure system persists for a period of days, a subsidence inversion aloft slowly lowers toward the surface. The cold, dry air at very high altitudes, which is lowering, becomes warmer and drier as it reaches lower altitudes. The tops of mountain ranges will experience the warm, very dry air first. If this condition persists, fuels are dried out and burning conditions become severe.

Foehn winds
Foehn winds caused by areas of subsidence

Another important effect of subsidence can be foehn winds. (See figure above) Foehn winds often occur on the lee slopes of prominent mountain ranges when the windward sides of the mountains are exposed to areas of subsidence. Heavy, stable air within the high-pressure cell pushes out in all directions from the center of the high but is restricted in its horizontal movement by the presence of the mountains. Eventually, this heavy air pours over the ridges and through canyons, creating strong, warm, dry winds at lower elevations on the lee side of the mountains

EE-Unit-II Ozone Layer Depletion

 

Ozone layer is a deep layer in earth’s atmosphere that contain ozone which is a naturally occurring molecule containing three oxygen atoms. These ozone molecules form a gaseous layer in the Earth’s upper atmosphere called stratosphere. This lower region of stratosphere containing relatively higher concentration of ozone is called Ozonosphere. The ozonosphere is found 15-35 km (9 to 22 miles) above the surface of the earth. The average concentration of ozone in the atmosphere is around 0.6 parts per million. The thickness of the ozone layer differs as per season and geography. The highest concentrations of ozone occur at altitudes from 26 to 28 km (16 to 17 miles) in the tropics and from 12 to 20 km (7 to 12 miles) towards the poles.

The ozone layer forms a thick layer in stratosphere, encircling the earth, that has large amount of ozone in it. It protects our planet i.e. Earth from the harmful radiations that comes from the sun. The ozone layer was discovered in 1913 by the French physicists Charles Fabry and Henri Buisson. The ozone layer has the capability to absorb almost 97-99% of the harmful ultraviolet radiations that sun emit and which can produce long term devastating effects on humans beings as well as plants and animals.

Ozone_hole

Why Ozone Layer is Necessary?

An essential property of ozone molecule is its ability to block solar radiations of wavelengths less than 290 nanometers from reaching Earth’s surface. In this process, it also absorbs ultraviolet radiations that are dangerous for most living beings. UV radiation could injure or kill life on Earth. Though the absorption of UV radiations warms the stratosphere but it is important for life to flourish on planet Earth. Research scientists have anticipated disruption of susceptible terrestrial and aquatic ecosystems due to depletion of ozone layer.

Ultraviolet radiation could destroy the organic matter. Plants and plankton cannot thrive, both acts as food for land and sea animals, respectively. For humans, excessive exposure to ultraviolet radiation leads to higher risks of cancer (especially skin cancer) and cataracts. It is calculated that every 1 percent decrease in ozone layer results in a 2-5 percent increase in the occurrence of skin cancer. Other ill-effects of the reduction of protective ozone layer include – increase in the incidence of cataracts, sunburns and suppression of the immune system.

Causes of Ozone Layer Depletion

During the last several decades, human activities have resulted in considerable reduction in the ozone layer of the atmosphere. Ozone depletion occurs when destruction of the stratospheric ozone is more than the production of the molecule. The scientists have observed reduction in stratospheric ozone since early 1970s. It is found to be more prominent in Polar Regions.

There are two regions in which the ozone layer has depleted.

  • In the mid-latitude, for example, over Australia, ozone layer is thinned. This has led to an increase in the UV radiation reaching the earth. It is estimated that about 5-9% thickness of the ozone layer has decreased, increasing the risk of humans to over-exposure to UV radiation owing to outdoor lifestyle.
  • In atmospheric regions over Antarctica, ozone layer is significantly thinned, especially in spring season. This has led to the formation of what is called ‘ozone hole’. Ozone holes refer to the regions of severely reduced ozone layers. Usually ozone holes form over the Poles during the onset of spring seasons. One of the largest such hole appears annually over Antarctica between September and November.

Ozone_layer_depletion

Natural causes of depletion of ozone layer: Ozone layer has been found to be affected by certain natural phenomena such as Sun-spots and stratospheric winds. But this has been found to cause not more than 1-2% depletion of the ozone layer and the effects are also thought to be only temporary. It is also believed that  the major volcanic eruptions (mainly El Chichon in 1983 and and Mt. Pinatubo in 1991) has also contributed towards ozone depletion.

Man-made causes of depletion of ozone layer: The main cause for the depletion of ozone is determined as excessive release of chlorine and bromine from man-made compounds such as chlorofluorocarbons (CFCs). CFCs (chlorofluorocarbons), halons, CH3CCl3 (Methyl chloroform), CCl4 (Carbon tetrachloride), HCFCs (hydro-chlorofluorocarbons), hydrobromofluorocarbons and methyl bromide are found to have direct impact on the depletion of the ozone layer. These are categorized as ozone-depleting substances (ODS). Chlorofluorocarbons are released into the atmosphere due to:

  • Cleaning Agents
  • Coolants in refrigerators
  • Packing material
  • Air conditioning
  • Aerosol spray cans etc.

The problem with the Ozone-Depleting Substances (ODS) is that they are not washed back in the form of rain on the earth and in-fact remain in the atmosphere for quite a long time. With so much stability, they are transported into the stratosphere. The emission of ODS account for roughly 90% of total depletion of ozone layer in stratosphere. These gases are carried to the stratosphere layer of atmosphere where ultraviolet radiations from the sun break them to release chlorine (from CFCs) and bromine (from methyl bromide and halons). The chlorine and bromine free radicals react with ozone molecule and destroy their molecular structure, thus depleting the ozone layer. One chlorine atom can break more than 1, 00,000 molecules of ozone. Bromine atom is believed to be 40 times more destructive than chlorine molecules.

Main Ozone Depleting Substances (OCD)

  • Chlorofluorocarbons: Account for more than 80% of ozone depletion. Used in freezers, air cooling component, dry-cleaning agents, hospital sterilants.
  • Methyl Chloroform: Used for vapour degreasing, some aerosols, cold cleaning, adhesives and chemical processing.
  • Hydrochlorofluorocarbons: Substitutes for CFC’s but still play a vital role in ozone depletion.
  • Halons
  • Carbon Tetrachloride: Mainly used in fire extinguishers

EE-Unit-II Green House Effect

A layer of greenhouse gases – primarily water vapor, and including much smaller amounts
of carbon dioxide, methane and nitrous oxide – acts as a thermal blanket for the Earth, absorbing heat and warming the surface to a life-supporting average of 59 degrees Fahrenheit (15 degrees Celsius).
A layer of greenhouse gases – primarily water vapor, and including much smaller amounts of carbon dioxide, methane and nitrous oxide – acts as a thermal blanket for the Earth, absorbing heat and warming the surface to a life-supporting average of 59 degrees Fahrenheit (15 degrees Celsius).

Most climate scientists agree the main cause of the current global warming trend is human expansion of the “greenhouse effect”1 — warming that results when the atmosphere traps heat radiating from Earth toward space.

Certain gases in the atmosphere block heat from escaping. Long-lived gases that remain semi-permanently in the atmosphere and do not respond physically or chemically to changes in temperature are described as “forcing” climate change. Gases, such as water vapor, which respond physically or chemically to changes in temperature are seen as “feedbacks.”

Gases that contribute to the greenhouse effect include:

Link
  • Water vapor. The most abundant greenhouse gas, but importantly, it acts as a feedback to the climate. Water vapor increases as the Earth’s atmosphere warms, but so does the possibility of clouds and precipitation, making these some of the most important feedback mechanisms to the greenhouse effect.
  • Carbon dioxide (CO2). A minor but very important component of the atmosphere, carbon dioxide is released through natural processes such as respiration and volcano eruptions and through human activities such as deforestation, land use changes, and burning fossil fuels. Humans have increased atmospheric CO2 concentration by a third since the Industrial Revolution began. This is the most important long-lived “forcing” of climate change.
  • Methane. A hydrocarbon gas produced both through natural sources and human activities, including the decomposition of wastes in landfills, agriculture, and especially rice cultivation, as well as ruminant digestion and manure management associated with domestic livestock. On a molecule-for-molecule basis, methane is a far more active greenhouse gas than carbon dioxide, but also one which is much less abundant in the atmosphere.
  • Nitrous oxide. A powerful greenhouse gas produced by soil cultivation practices, especially the use of commercial and organic fertilizers, fossil fuel combustion, nitric acid production, and biomass burning.
  • Chlorofluorocarbons (CFCs). Synthetic compounds entirely of industrial origin used in a number of applications, but now largely regulated in production and release to the atmosphere by international agreement for their ability to contribute to destruction of the ozone layer. They are also greenhouse gases.
Not enough greenhouse effect: The planet Mars has a very thin atmosphere, nearly all carbon dioxide.   Because of the low atmospheric pressure, and with little to no methane or water vapor to reinforce the weak greenhouse effect, Mars has a largely frozen surface that shows no evidence of life.
Not enough greenhouse effect: The planet Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the low atmospheric pressure, and with little to no methane or water vapor to reinforce the weak greenhouse effect, Mars has a largely frozen surface that shows no evidence of life.
Too much greenhouse effect: The atmosphere of Venus, like Mars, is nearly all carbon dioxide.  But Venus has about 300 times as much carbon dioxide in its atmosphere as Earth and Mars do, producing a runaway greenhouse effect and a surface temperature hot enough to melt lead.
Too much greenhouse effect: The atmosphere of Venus, like Mars, is nearly all carbon dioxide. But Venus has about 300 times as much carbon dioxide in its atmosphere as Earth and Mars do, producing a runaway greenhouse effect and a surface temperature hot enough to melt lead.

On Earth, human activities are changing the natural greenhouse. Over the last century the burning of fossil fuels like coal and oil has increased the concentration of atmospheric carbon dioxide (CO2). This happens because the coal or oil burning process combines carbon with oxygen in the air to make CO2. To a lesser extent, the clearing of land for agriculture, industry, and other human activities have increased concentrations of greenhouse gases.

The consequences of changing the natural atmospheric greenhouse are difficult to predict, but certain effects seem likely:

  • On average, Earth will become warmer. Some regions may welcome warmer temperatures, but others may not.
  • Warmer conditions will probably lead to more evaporation and precipitation overall, but individual regions will vary, some becoming wetter and others dryer.
  • A stronger greenhouse effect will warm the oceans and partially melt glaciers and other ice, increasing sea level. Ocean water also will expand if it warms, contributing further to sea level rise.
  • Meanwhile, some crops and other plants may respond favorably to increased atmospheric CO2, growing more vigorously and using water more efficiently. At the same time, higher temperatures and shifting climate patterns may change the areas where crops grow best and affect the makeup of natural plant communities.

The role of human activity

In its Fourth Assessment Report, the Intergovernmental Panel on Climate Change, a group of 1,300 independent scientific experts from countries all over the world under the auspices of the United Nations, concluded there’s a more than 90 percent probability that human activities over the past 250 years have warmed our planet.

The industrial activities that our modern civilization depends upon have raised atmospheric carbon dioxide levels from 280 parts per million to 400 parts per million in the last 150 years. The panel also concluded there’s a better than 90 percent probability that human-produced greenhouse gases such as carbon dioxide, methane and nitrous oxide have caused much of the observed increase in Earth’s temperatures over the past 50 years.

They said the rate of increase in global warming due to these gases is very likely to be unprecedented within the past 10,000 years or more.

Solar irradiance

It’s reasonable to assume that changes in the sun’s energy output would cause the climate to change, since the sun is the fundamental source of energy that drives our climate system.

Indeed, studies show that solar variability has played a role in past climate changes. For example, a decrease in solar activity is thought to have triggered the Little Ice Age between approximately 1650 and 1850, when Greenland was largely cut off by ice from 1410 to the 1720s and glaciers advanced in the Alps.

But several lines of evidence show that current global warming cannot be explained by changes in energy from the sun:

  • Since 1750, the average amount of energy coming from the sun either remained constant or increased slightly.
  • If the warming were caused by a more active sun, then scientists would expect to see warmer temperatures in all layers of the atmosphere. Instead, they have observed a cooling in the upper atmosphere, and a warming at the surface and in the lower parts of the atmosphere. That’s because greenhouse gasses are trapping heat in the lower atmosphere.
  • Climate models that include solar irradiance changes can’t reproduce the observed temperature trend over the past century or more without including a rise in greenhouse gases.

EE-Unit-II Green House Effect

Carbon dioxide (CO2) is an atmospheric constituent that plays several vital roles in the environment. It absorbs infrared radiation in the atmosphere. It plays a crucial role in the weathering of rocks. It is the raw material for photosynthesis and its carbon is incorporated into organic matter in the biosphere and may eventually be stored in the Earth as fossil fuels.

Most of the sun’s energy that falls on the Earth’s surface is in the visible light portion of the electromagnetic spectrum. This is in large part because the Earth’s atmosphere is transparent to these wavelengths (we all know that with a functioning ozone layer, the higher frequencies like ultraviolet are mostly screened out). Part of the sunlight is reflected back into space, depending on the albedo or reflectivity of the surface. Part of the sunlight is absorbed by the Earth and held as thermal energy. This heat is then re-radiated in the form of longer wavelength infrared radiation. While the dominant gases of the atmosphere (nitrogen and oxygen) are transparent to infrared, the so-called greenhouse gasses, primarily water vapor (H2O), CO2, and methane (CH4), absorb some of the infrared radiation. They collect this heat energy and hold it in the atmosphere, delaying its passage back out of the atmosphere.

Due in part to the warming effects of the greenhouse gases, the global average temperature is about 15°C (59°F). Without the greenhouse gases the global average temperature would be much colder, about -18°C (0°F).

Greenhouse Gas Induced Global Warming

Since the industrial revolution got into full swing in the 19th century we have been burning ever increasing amounts of fossil fuels (coal, oil, gasoline, natural gas) in electric generating plants, manufacturing plants, trains, automobiles, airplanes, etc. Burning releases CO2 into the atmosphere (much the same as respiration does). These fossil fuels may have formed tens or hundreds of millions of years ago from the buried and preserved remains of plant and animal matter whose carbon originated via photosynthesis.

Sidebar: Photosynthesis – Respiration-Combustion

photosynthesis
CO2 + H2O + sunlight -> CH2O + O2

respiration
O2 + CH2O -> energy + H2O + CO2

combustion
O2 + hydrocarbons -> energy + H2O + CO2

Photosynthesis and respiration in plants, animals, fungi, bacteria, etc. exchange carbon between the CO2 in the atmosphere and carbon compounds in organisms. But humans are now putting this natural carbon cycle out of balance. Because of the emission of CO2 long-stored in fossil fuels the percentage of CO2 in the atmosphere has increased from about 289 parts per million before the industrial revolution to over 360 parts per million and rising. Sometime during the 21st century the concentration of CO2 will be twice what it was before the industrial revolution.

With higher CO2 concentrations come expectations of a stronger greenhouse effect and therefore warmer global temperatures. This was originally proposed by a chemist named Arrhenius about a century ago. Global average temperatures have risen by a small, but measurable amount in the past 100 years, apparently in large part because of the higher level of atmospheric CO2. Global average temperatures are expected to be on the order of 2-5°C (3.6-9°F) higher by the time CO2 doubles the pre-industrial concentration. The temperature rise will be small in the tropics but much greater at high latitudes.

Consequences of Global Warming

A whole host of consequences will result. Some are probably already occurring.

Temperature measurements of the sea surface and deep ocean indicate that the oceans are warming. Rising ocean temperature causes rising sea level from thermal expansion of the water. Rising temperature also means melting glaciers and rising sea level through addition of meltwater to the oceans. Sea level rose about 1 foot during the last century, mostly from thermal expansion of the oceans. Sea level is expected to rise closer to 3 feet during the coming century. Rising sea level will cause increasing coastal erosion, flooding, and property damage during coastal storms on top of the potential for major loss of life from storms in low-lying coastal countries like Bangladesh and island nations in the Indian and Pacific Oceans.

Warmer sea surface temperatures will result in more and stronger tropical storms (hurricanes and typhoons). Coastlines already ravaged by these storms will expect to see more strong storms than before, increasing the loss of life and damage to infrastructure.

It is much more difficult to predict how regional and local weather patterns will change but there will certainly be changes. While higher temperatures will produce more rainfall across the globe, the regional rainfall patterns will likely change. Some areas will get more, some areas will get less. The timing of wet and dry periods may change. But higher temperatures will also mean more evaporation. Higher temperatures may also mean stronger storms with damaging winds. All of these mean new risks and changing conditions for agriculture. Centuries old farming practices will have to change. Some areas may go from being marginal to becoming a breadbasket region, while other regions may go from major agricultural production to marginal.

Higher CO2 allows plants to grow faster (more CO2 enhances photosynthesis). That would sound good for agriculture. However, weed species tend to grow even better than crop plants under enhanced CO2 conditions so improved crop growth may be nullified by weed competition.

Natural ecosystems will be hard pressed to keep up with the changing climate because the rate of change will be faster than typical long-term natural climate change. Many species, especially plant species, will not be able to migrate to cooler areas fast enough to keep up with the warming of their habitats. And arctic species will have no place to go and may not be able to adapt to the new conditions.

Severe summer heat in areas not used to it can lead to deaths. Higher heat and expansion of tropical areas may lead to increased incidence of malaria.

What Can We Do About Global Warming?

We can’t realistically stop the rise of CO2 in the near term, but we can slow it and therefore reduce the consequences that will occur. More fuel-efficient cars, less frivolous driving, more use of mass transit, improved insulation to decrease the fuel burned to heat and cool our homes, more efficient appliances, use of fluorescent rather than incandescent light bulbs, and careful monitoring of home electricity usage (turn off the lights and TV when not using them) can reduce our energy needs. Conversion to alternatives like wind and solar power which don’t burn fossil fuels and emit CO2 into the atmosphere. Planting large areas with trees will consume CO2 as the trees grow, until the forests mature. Stopping deforestation in the tropical forests around the world, especially in the Amazon and Indonesian rain forests, will keep that carbon in the forest rather than sending it back into the atmosphere as the trees are burned or decay and are not replaced by more. Other techniques have also been proposed such as the chemical removal of CO2 from smokestacks and burial in deep underground reservoirs, though only certain areas can benefit from this, or disposal in the deep ocean where they will form a semi-stable compound under the cold temperatures and high pressures, though the CO2 could too easily come bubbling back up. These latter solutions are not well studied and wouldn’t be especially cheap.

Moreover, leaders, societies, communities, local planners, farmers, health organizations, need to recognize the changing climate and rising sea level as they make plans for the future. Our citizens need to be educated as to likely changes and how best to deal with the changing conditions.

EE-Unit-II Photochemical Smog

The industrial revolution has been the central cause for the increase in pollutants in the atmosphere over the last three centuries. Before 1950, the majority of this pollution was created from the burning of coal for energy generation, space heating, cooking, and transportation. Under the right conditions, the smoke and sulfur dioxide produced from the burning of coal can combine with fog to create industrial smog. In high concentrations, industrial smog can be extremely toxic to humans and other living organisms. London is world famous for its episodes of industrial smog. The most famous London smog event occurred in December, 1952 when five days of calm foggy weather created a toxic atmosphere that claimed about 4000 human lives. Today, the use of other fossil fuels, nuclear power, and hydroelectricity instead of coal has greatly reduced the occurrence of industrial smog. However, the burning of fossil fuels like gasoline can create another atmospheric pollution problem known as photochemical smog. Photochemical smog is a condition that develops when primary pollutants (oxides of nitrogen and volatile organic compounds created from fossil fuel combustion) interact under the influence of sunlight to produce a mixture of hundreds of different and hazardous chemicals known as secondary pollutants. The Table below describes the major toxic constituents of photochemical smog and their effects on the environment. Development of photochemical smog is typically associated with specific climatic conditions and centers of high population density. Cities like Los Angeles, New York, Sydney, and Vancouver frequently suffer episodes of photochemical smog.


Major Chemical Pollutants in Photochemical Smog:
Sources and Environmental Effects

Toxic Chemical

Sources

Environmental Effects

Additional Notes

Nitrogen Oxides
(NO and NO
2)
– combustion of oil, coal, gas in both automobiles and industry
– bacterial action in soil
– forest fires
– volcanic action
– lightning
– decreased visibility due to yellowish color of NO2
– NO2 contributes to heart and lung problems
– NO2 can suppress plantgrowth
– decreased resistance to infection
– may encourage the spread of cancer
– all combustion processes account for only 5 % of NO2 in the atmosphere, most is formed from reactions involving NO
-concentrations likely to rise in the future
Volatile Organic Compounds (VOCs)
– evaporation of solvents
– evaporation of fuels
– incomplete combustion of fossil fuels
– naturally occurring compounds like terpenes from trees
– eye irritation
– respiratory irritation
– some are carcinogenic
– decreased visibility due to blue-brown haze
– the effects of VOCs are dependent on the type of chemical
– samples show over 600 different VOCs in atmosphere
– concentrations likely to continue to rise in future
Ozone (O3)
– formed from photolysis of NO2
– sometimes results from stratospheric ozone intrusions
– bronchial constriction
– coughing, wheezing
– respiratory irritation
– eye irritation
– decreased crop yields
– retards plant growth
– damages plastics
– breaks down rubber
– harsh odor
– concentrations of 0.1 parts per million can reduce photosynthesis by 50 %
– people with asthma and respiratory problems are influenced the most
– can only be formed during daylight hours
Peroxyacetyl Nitrates (PAN) – formed by the reaction of NO2 with VOCs (can be formed naturally in some environments)
– eye irritation
– high toxicity to plants
– respiratory irritation
– damaging to proteins
– was not detected until recognized in smog
– higher toxicity to plants than ozone


(b). Development of Photochemical Smog

Certain conditions are required for the formation of photochemical smog. These conditions include:

1. A source of nitrogen oxides and volatile organic compounds. High concentrations of these two substances are associated with industrialization and transportation. Industrialization and transportation create these pollutants through fossil fuel combustion.

2. The time of day is a very important factor in the amount of photochemical smog present.

  • Early morning traffic increases the emissions of both nitrogen oxides and VOCs as people drive to work.
  • Later in the morning, traffic dies down and the nitrogen oxides and volatile organic compounds begin to be react forming nitrogen dioxide, increasing its concentration.
  • As the sunlight becomes more intense later in the day, nitrogen dioxide is broken down and its by-products form increasing concentrations of ozone.
  • At the same time, some of the nitrogen dioxide can react with the volatile organic compounds to produce toxic chemicals such as PAN.
  • As the sun goes down, the production of ozone is halted. The ozone that remains in the atmosphere is then consumed by several different reactions.

3. Several meteorological factors can influence the formation of photochemical smog. These conditions include:

  • Precipitation can alleviate photochemical smog as the pollutants are washed out of the atmosphere with the rainfall.
  • Winds can blow photochemical smog away replacing it with fresh air. However, problems may arise in distant areas that receive the pollution.
  • Temperature inversions can enhance the severity of a photochemical smog episode. Normally, during the day the air near the surface is heated and as it warms it rises, carrying the pollutants with it to higher elevations. However, if a temperature inversion develops pollutants can be trapped near the Earth’s surface. Temperature inversions cause the reduction of atmospheric mixing and therefore reduce the vertical dispersion of pollutants. Inversions can last from a few days to several weeks.

4. Topography is another important factor influencing how severe a smog event can become. Communities situated in valleys are more susceptible to photochemical smog because hills and mountains surrounding them tend to reduce the air flow, allowing for pollutant concentrations to rise. In addition, valleys are sensitive to photochemical smog because relatively strong temperature inversions can frequently develop in these areas.

(c). Chemistry of Photochemical Smog

The previous section suggested that the development of photochemical smog is primarily determined by an abundance of nitrogen oxides and volatile organic compounds in the atmosphere and the presence of particular environmental conditions. To begin the chemical process of photochemical smog development the following conditions must occur:

  • Sunlight.
  • The production of oxides of nitrogen (NOx).
  • The production of volatile organic compounds (VOCs).
  • Temperatures greater than 18 degrees Celsius.

If the above criteria are met, several reactions will occur producing the toxic chemical constituents of photochemical smog. The following discussion outlines the processes required for the formation of two most dominant toxic components: ozone (O3) and peroxyacetyl nitrate (PAN). Note the symbol R represents ahydrocarbon (a molecule composed of carbon, hydrogen and other atoms) which is primarily created from volatile organic compounds.

Nitrogen dioxide can be formed by one of the following reactions. Notice that the nitrogen oxide (NO) acts to remove ozone (O3) from the atmosphere and this mechanism occurs naturally in an unpolluted atmosphere.

O3 + NO »»» NO2 + O2

NO + RO2 »»» NO2 + other products

Sunlight can break down nitrogen dioxide (NO2) back into nitrogen oxide (NO).

NO2 + sunlight »»» NO + O

The atomic oxygen (O) formed in the above reaction then reacts with one of the abundant oxygen molecules (which makes up 20.94 % of the atmosphere) producingozone (O3).

O + O2 »»» O3

Nitrogen dioxide (NO2) can also react with radicals produced from volatile organic compounds in a series of reactions to form toxic products such as peroxyacetyl nitrates (PAN).

NO2 + R »»» products such as PAN

It should be noted that ozone can be produced naturally in an unpolluted atmosphere. However, it is consumed by nitrogen oxide as illustrated in the first reaction. The introduction of volatile organic compounds results in an alternative pathway for the nitrogen oxide, still forming nitrogen dioxide but not consuming the ozone, and therefore ozone concentrations can be elevated to toxic levels.

EE-Unit-II Acid Rain

“Acid Rain,”  or more precisely acid precipitation, is the word used to describe rainfall that has a pH level of less than 5.6.  This form of air pollution is currently a subject of great controversy because of it’s worldwide environmental damages. Acid rain is formed when oxides of nitrogen and sulfite combine with moisture in the atmosphere to make nitric and sulfuric acids.  These acids can be carried away far from its origin.  This report contains the causes, effects, and solutions to acid rain.

     The two primary sources of acid rain are sulfur dioxide (SO2), and oxides of nitrogen (NOx).  Sulfur dioxide is a colourless, prudent gas released as a by-product of combusted fossil fuels containing sulfur.  A variety of industrial processes, such as the production of iron and steel, utility factories, and crude oil processing produce this gas.  In iron and steel production, the smelting of metal sulfate ore, produces pure metal. This causes the release of sulfur dioxide.  Metals such as zinc, nickel, and copper are commonly obtained by this process.  Sulfur dioxide can also be emitted into the atmosphere by natural disasters or means.  This ten percent of all sulfur dioxide emission comes from volcanoes, sea spray, plankton, and rotting vegetation.  Overall, 69.4 percent of sulfur dioxide is produced by industrial combustion.  Only 3.7 percent is caused by transportation

     The other chemical that is also chiefly responsible for the make-up of acid rain is nitrogen oxide.  Oxides of nitrogen is a term used to describe any compound of nitrogen with any amount of oxygen atoms.  Nitrogen monoxide and nitrogen dioxide are all oxides of nitrogen.  These gases are by-products of firing processes of extreme high temperatures (automobiles, utility plants), and in chemical industries (fertilizer production).  Natural processes such as bacterial action in soil, forest fires, volcanic action, and lightning make up five percent of nitrogen oxide emission.  Transportation makes up 43 percent, and 32 percent belongs to industrial combustion.  [“Acid Rain.”  The New World Book Encyclopedia.  1993.]

     Nitrogen oxide is a dangerous gas by itself.  This gas attacks the membranes of the respiratory organs and increases the likelihood of respiratory illness.  It also contributes to ozone damage, and forms smog.  Nitrogen oxide can spread far from the location it was originated by acid rain.

     As mentioned before, any precipitation with a pH level less than 5.6 is considered to be acid rainfall.  The difference between regular precipitation and acid precipitation is the pH level.  pH is a symbol indicating how acidic or basic a solution is in ratios of relative concentration of hydrogen ions in a solution.  A pH scale is used to determine if a specific solution is acidic or basic.  Any number below seven is considered to be acidic.  Any number above seven is considered to be basic.  The scale is color coordinated with the pH level.  Most pH scales use a range from zero to fourteen.  Seven is the neutral point (pure water).  A pH from 6.5 to 8, is considered the safe zone.  Between these numbers, organisms are in very little or no harm.

     Not only does the acidity of acid precipitation depend on emission levels, but also on the chemical mixtures in which sulfur dioxide and nitrogen oxides interact in the atmosphere.  Sulfur dioxide and nitrogen oxides go through several complex steps of chemical reactions before they become the acids found in acid rain.  The steps are broken down into two phases, gas phase and aqueous phase.  There are various potential reactions that can contribute to the oxidation of sulfur dioxide in the atmosphere each having varying degrees of success.  One possibility is photooxidation of sulfuric dioxide by means of ultraviolet light.  This process uses light form the of electromagnetic spectrum.  This causes the loss of by two oxygen atoms.  This reaction was found to be an insignificant contributor to the formation of sulfuric acid.  A second and more common process is when sulfur dioxide reacts with moisture found in the atmosphere.  When this happens, sulfate dioxide immediately oxidizes to form a sulfite ion.

SO2 (g)+O2(g) -> SO3(g)

Afterwards, it becomes sulfuric acid when it joins with hydrogen atoms in the air.

SO3(g)+H2O(l) -> H2SO4(aq)

     This reaction occurs quickly, therefore the formation of sulfur dioxide in the atmosphere is assumed to lead this type of oxidation to become sulfuric acid.  Reaction example 1 (photooxidation), is slow due to the absence of a catalyst, proving why it is not a significant contributor.

     Another common reaction for sulfur dioxide to becomes sulfuric acid is by oxidation by ozone.  This reaction occurs at a preferable rate and is sometimes the main contributor to the oxidation of sulfuric acid.  This, hydroxy radical is produced by the photodecomposition of the ozone and is very highly reactive with any species (type of chemical compounds).  It does not require a catalyst and it is approximately 108-109 times more abundant in the atmosphere than molecular oxygen.  Other insignificant reactions include oxidation by product of alkene-zone reactions, oxidation by reaction of NxOy species, oxidation by reactive oxygen transients, and oxidation by peroxy radicals.  These reactions unfortunately prove to be insignificant for various reasons.  All the reactions mentioned so far, are gas phase reactions.  In  the aqueous phase, sulfur dioxide exists as three species:

[S(IV)] -> [SO2(aq)] + [HSO32-] + [SO32-]

This dissociation occurs in a two part process:

SO2(aq) -> H+ + HSO3 –

HSO3-   (aq) -> H+  + SO32-

     The oxidation process of aqueous sulfur dioxide by molecular oxygen relies on metal catalyst such as iron and manganese.  This reaction is unlike other oxidation process, which occurs by hydrogen peroxide.  It requires an additional formation of an intermediate (A-), for example peroxymonosulfurous acid ion.  This formation is shown below.

HSO3  H2O2 -> A-  +H2O

A-  +H  -> H2SO4

     Sulfur dioxide oxidation is most common in clouds and especially in heavily polluted air where compounds such as ammonia and ozone are in abundance.  These catalysts help convert more sulfur dioxide into sulfuric acid.   But not all of the sulfur dioxide is converted to sulfuric acid.  In fact, a substantial amount can float up into the atmosphere, transport to another area and return to earth unconverted.

     Like sulfur dioxide, nitrogen oxides rise into the atmosphere and are oxidized in clouds to form nitric or nitrous acid.  These reactions are catalyzed in heavily polluted clouds where traces of iron, manganese, ammonia, and hydrogen peroxide are present.  Nitrogen oxides rise into the atmosphere mainly from automobile exhaust.  In the atmosphere it reacts with water to form nitric or nitrous acid.

NO2(g) + H2O(l) -> HNO3(aq)+HNO2(aq)  [gas phase]

In the aqueous phase there are three equilibria to keep in mind for the oxidation of nitrogen oxide.

1.)  2NO2(g) + H2O(l) -> 2H+ + NO3 –  + NO2 –
2.)  NO(g) + NO2(g) + H2O(l) -> 2H+  + 2NO2 –
3.)  3NO2(g) + H2O(l) -> 2H+  + 2NO3 –  + NO(g)

     These reactions are limited by the partial pressures of nitrogen oxides present in the atmosphere, and the low solubility of nitrogen oxides, increase in reaction rate occurs only with the use of a metal catalyst, similar to those used in the aqueous oxidation of sulfur dioxide.

     Over the years, scientists have noticed that some forests have been growing more and more slowly without reason.  Trees do not grow as fast as they did before.  Leaves and pines needles turn brown and fall off when they are supposed to be green.

     Eventually, after several years of collecting and recording information on the chemistry and biology of the forest, researchers have concluded that this was the work of acid rain.  A rainstorm occurs in a forest.  The summer spring washes the leaves of the branches and fall to the forest floor below.  Some of the water is absorbed into the soil.  Water run-off enters nearby streams, rivers, or lakes.  That soil may have neutralized some or all of the acidity of the acid rainwater.  This ability of neutralization is call buffering capacity.  Without buffering capacity, soil pH would change rapidly.  Midwestern states like Nebraska and Indiana have soil that is well buffered.  Nonetheless, mountainous northwest areas such as the Adirondack mountains are less able to buffer acid.  High pH levels in the soil help accelerate soil weathering and remove nutrients.  It also makes some toxic elements, for example aluminum, more soluble.  High aluminum concentrations in soil can prevent the use of nutrients by plants.  Acid rain does not kill trees immediately or directly.  Instead, it is more likely to weaken the tree by destroying its leaves, thus limiting the nutrients available to it.  Or, acid rain can seep into the ground, poisoning the trees with toxic substances that are slowly being absorbed through the roots.  When acid rain falls, the acidic rainwater dissolves the nutrients and helpful minerals from the soil.  These minerals are then washed away before trees and other plants can use them to grow.  Not only does acid rain strip away the nutrients from the plants, they help release toxic substance such as aluminum into the soil.  This occurs because these metals are bound to the soil under normal conditions, but the additional dissolving action of hydrogen ions causes rocks and small bound soil particles to break down.  When acid rain is frequent, leaves tend to lose their protective waxy coating,  When leaves lose their coating, the plant itself is open to any possible disease.  By damaging the leaves, the plant can not produce enough food energy for it to remain healthy.  Once the plant is weak, it can become more vulnerable to disease, insects, and cold weather which may ultimately kill it.

     Acid rain does not only effect organisms on land, but also effect organisms in aquatic biomes.  Most lakes and streams have a pH level between six and eight.  Some lakes are naturally acidic even without the effects of acid rain.  For example, Little Echo Pond in New York has a pH level of 4.2.

     There are several routes through which acid rain can enter the lakes.  Some chemical substances exist as dry particles in the atmosphere, while others enter directly into the lake in a form of precipitation.  Acid rain that has fallen on land can be drained through sewage systems leading to lakes.  Another way acids can enter the lake is by spring acid shock.  When acid snow melts in the spring, the acids in the snow seeps into the ground.  Some run-off the ground and into lakes.

     Spring is a vulnerable time for many species since this is the time for reproduction.  The sudden change in pH level is dangerous because the acid can cause serious deformities in their young.  Generally, the young of most species are more sensitive than the elders.  But not all species can tolerate the same amount of acid.  For example, frogs may tolerate relatively high levels of acidity, while snails are more sensitive to pH changes.

     Sulfuric acid in polluted precipitation interferes with the fish’s proficiency to take in oxygen, salt, and nutrients.  For freshwater fish, maintaining osmoregulation (the ability to maintain a state of balance between salt and minerals in the organism’s tissue) is essential to stay alive.  Acid molecules cause mucus to form in their gills preventing the fish to absorb oxygen well.  Also, a low pH level will throw off the balance of salt in the fish’s tissue.  Calcium levels of some fish cannot be maintained due to the changes in pH level.  This causes a problem in reproduction: the eggs are too brittle or weak.  Lacking calcium causes weak spines and deformities in bones.  Sometimes when acid rainfall runs off the land, it carries fertilizers with it.  Fertilizer helps stimulate the growth of algae because of the amount of nitrogen in it.  However, because of the increase in the death of fish the decomposition takes up even more oxygen.  This takes away from surviving fish.  In other terms, acid rain does not help aquatic ecosystems in anyway.

     Acid rain does not only damage the natural ecosystems, but also man-made materials and structures.  Marble, limestone, and sandstone can easily be dissolved by acid rain.  Metals, paints, textiles, and ceramic can effortlessly be corroded.  Acid rain can downgrade leather and rubber.  Man-made materials slowly deteriorate even when exposed to unpolluted rain, but acid rain helps speed up the process.  Acid rain causes carvings and monuments in stones to lose their features.

In limestone, acidic water reacts with calcium to form calcium sulfate.

CaCO3 + H2SO4 -> CaSO4 +  H2CO3

For iron, the acidic water produces an additional proton giving iron a positive charge.

4Fe(s) + 2O2(g) + 8  (aq) -> 4Fe2+  (aq) + 4H2O(l)

When iron reacts with more oxygen it forms iron oxide (rust).

4Fe2+ + (aq) + O2(g) + 4H2O(l) -> 2Fe2O3(s) + 8H+ + (aq)

     Most importantly, acid rain can affect health of a human being.  It can harm us through the atmosphere or through the soil from which our food is grown and eaten from.  Acid rain causes toxic metals to break loose from their natural chemical compounds. Toxic metals themselves are dangerous, but if they are combined with other elements, they are harmless.  They release toxic metals that might be absorbed by the drinking water, crops, or animals that human consume.  These foods that are consumed could cause nerve damage to children or severe brain damage or death.  Scientists believe that one metal, aluminum, is suspected to relate to Alzheimer’s disease.

     One of the serious side effects of acid rain on human is respiratory problems.  The sulfur dioxide and nitrogen oxide emission gives risk to respiratory problems such as dry coughs, asthma, headaches, eye, nose, and throat irritation.  Polluted rainfall is especially harmful to those who suffer from asthma or those who have a hard time breathing.  But even healthy people can have their lungs damaged by acid air pollutants.  Acid rain can aggravate a person’s ability to breathe and may increase disease which could lead to death.

     In 1991, the United States and Canada signed an air quality agreement.  Ever since that time, both countries have taken actions to reduce sulfur dioxide emission.  The United States agree to reduce their annual sulfur dioxide emission by about ten million tons by the year 2000.  A year before the agreement, the Clean Air Pact Amendment tried to reduce nitrogen oxide by two million tons.  This program focused on the source that emits nitrogen oxide, automobiles and coal-fired electric utility boilers.

     Reducing nitrogen oxide emission in a utility plant starts during the combustion phase.  A procedure called Overfire Air is used to redirect a fraction of the total air in the combustion chamber. This requires the combustion process, which is redirected to an upper furnace.  This causes the combustion to occur with less O2 than required, thus slowing down the transformation of atmospheric nitrogen to nitrogen oxide.  After combustion, a system of catalytic reductions are put into effect.  This system embraces the injection of ammonia gas upstream of the catalytic reaction chamber.  The gas will react with nitrogen oxide by this reaction.

4NO + 4NH3 + O2 -> 4N2+6H2O

Then it will react with NO2 by the following reaction.

2NO2 + 4NH3 + O2 -> 3N2 + 6H2O

The safe nitrogen can be released into the atmosphere.

     Since most nitrogen oxide emissions are from cars, catalytic converters must be install on cars to reduce this emission.  The catalytic converter is mounted on the exhaust pipe, forcing all the exhaust to pass though it.  This converter looks like a dense honeycomb, but it is coated with either platimun, palladium, or rhodium.  This converts nitrogen oxides, carbon dioxides and unburned hydrocarbons into a cleaner state.

     To reduce sulfur dioxide emission utility plants are required to do several steps  by the Clean Air Act Amendment.  Before combustion, these utilities plants have to go through a process call coal cleaning.  This process is performed gravitationally.  Meaning, it is successful in removing pyritic sulfur due to its high specific gravity, but it is unsuccessful in removing chemically bound organic sulfur.  This cleaning process is only limited by the percent of pyritic sulfur in the coal.  Coal with high amount of pyritic sulfur is coal in higher demands.  Another way to reduce sulfur dioxide before combustion is by burning  coal with low sulfur content.  Low sulfur content coals are called subituminous coal.  This process in reducing sulfur dioxide is very expensive due to the high demand of subituminous coal.

     During combustion, a process called Fluidized Bed Combustion (FBC), is used to reduce sulfur dioxide emissions into the atmosphere. This process contains limestone or a sandstone bed that are crushed and diluted into the fuel. It is important that a balance is established between the heat liberated within the bed from fuel combustion, and the heat removed by the flue gas as it leaves.  Flue gas is the mixture of gases resulting from combustion and other reactions in a chamber.  This enables the limestones to react with sulfur dioxide and reduce emission by 90 percent.  After combustion, a process known as wet flue gas desulfurization is taken into action.  This process requires a web scrubber at the downward end of the boiler.  This process is very similar to FBC.  This scrubber can be made of either limestone or sodium hydroxide.  Limestone is more commonly used.  As sulfur dioxide enters this area it reacts with the limestone in the following example:

CaCO3 + SO2 + H2O + O2 -> CaSO3 + CaSO4 + CO2 + H2O

After being scrubbed, which is the term used for the phase after coal has past the wet scrubber, the flue gas is re-emmited and the waste solids are disposed.

     Acid rain is an issue that can not be over looked.  This phenomenon destroys anything it touches or interacts with it.  When acid rain damages the forest or the environment it affects humans in the long run.  Once forests are totally destroyed and lakes are totally polluted animals begin to decrease because of lack of food and shelter.  If all the animals, which are our food source, die out, humans too would die out.  Acid rain can also destroy our homes and monuments that humans hold dearly.

     What humans can do, as citizens, to reduce sulfur and nitrogen dioxide emission is to reduce the use of fossil fuels.  Car pools, public transportation, or walking can reduce tons of nitrogen oxide emissions.  Using less energy benefits the environment because the energy used comes from fossil fuels which can lead to acid rain.  For example, turning off lights not being used, and reduce air conditioning and heat usage.  Replacing old appliances and electronics with newer energy efficient products is also an excellent idea.  Sulfur dioxide emission can be reduced by adding scrubbers to utility plants.  An alternative power source can also be used in power plants to reduce emissions.  These alternatives are: geothermal energy, solar power energy, wind energy, and water energy.

     In conclusion, the two primary sources of acid rain is sulfur dioxide and nitrogen oxide.  Automobiles are the main source of nitrogen oxide emissions, and utility factories are the main source for sulfur dioxide emissions.  These gases evaporate into the atmosphere and then oxidized in clouds to form nitric or nitrous acid  and sulfuric acid.  When these acids fall back to the earth they do not cause damage to just the environment but also to human health.  Acid rain kills plant life and destroys life in lakes and ponds.  The pollutants in acid rain causes problem in human respiratory systems.  The pollutants attack humans indirectly through the foods they consumed.  They effected human health directly when humans inhale the pollutants.  Governments have passed laws to reduce emissions of sulfur dioxide and nitrogen oxide, but it is no use unless people start to work together in stopping the release of these pollutants.  If the acid rain destroys our environment, eventually it will destroy us as well.

EE-Unit-II Air Pollution Types and Sources

Air pollution occurs in many forms but can generally be thought of as gaseous and particulate contaminants that are present in the earth’s atmosphere. Gaseous pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), hydrogen sulfide (H2S), hydrogen fluoride (HF), and various gaseous forms of metals. These pollutants are emitted from large stationary sources such as fossil fuel fired power plants, smelters, industrial boilers, petroleum refineries, and manufacturing facilities as well as from area and mobile sources. They are corrosive to various materials which causes damage to cultural resources, can cause injury to ecosystems and organisms, aggravate respiratory diseases, and reduce visibility.

Particulates come in both large and small or “fine” solid forms. Large particulates include substances such as dust, asbestos fibers, and lead. Fine particulates include sulfates (SO4) and nitrates (NO3). Important sources of particulates are power plants, smelters, mining operations, and automobiles. Asbestos and lead affect organisms, while sulfates and nitrates not only cause health problems, but also contribute to acid rain or acid deposition and a reduction in visibility. Particulate matter, a term sometimes used instead of particulates, refers to the mixture of solid particles and liquid droplets found in the air.

Toxic air pollutants are a class of chemicals which may potentially cause health problems in a significant way. The sources of toxic air pollutants include power plants, industries, pesticide application, and contaminated windblown dust. Persistent toxic pollutants, such as mercury, are of particular concern because of their global mobility and ability to accumulate in the food chain. More research is needed to fully understand the fate and effects of mercury and the many other toxic pollutants.

Primary pollutants are those that are emitted directly into the air from pollution sources. Secondary pollutants are formed when primary pollutants undergo chemical changes in the atmosphere. Ozone is an example of a secondary pollutant. It is formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) are mixed and warmed by sunlight. Ozone (O3) is a major component of what is often referred to as smog. The ozone which is present in the troposphere, or the atmosphere that is close to the ground, should not be confused with beneficial ozone that is located in the stratosphere or upper atmosphere. This beneficial ozone in the stratosphere helps protect the earth from harmful ultraviolet light from the sun.

Sources of Air Pollution

Stationary and Area Sources
A stationary source of air pollution refers to an emission source that does not move, also known as a point source. Stationary sources include factories, power plants, dry cleaners and degreasing operations. The term area source is used to describe many small sources of air pollution located together whose individual emissions may be below thresholds of concern, but whose collective emissions can be significant. Residential wood burners are a good example of a small source, but when combined with many other small sources, they can contribute to local and regional air pollution levels. Area sources can also be thought of as non-point sources, such as construction of housing developments, dry lake beds, and landfills.

Mobile Sources
A mobile source of air pollution refers to a source that is capable of moving under its own power. In general, mobile sources imply “on-road” transportation, which includes vehicles such as cars, sport utility vehicles, and buses. In addition, there is also a “non-road” or “off-road” category that includes gas-powered lawn tools and mowers, farm and construction equipment, recreational vehicles, boats, planes, and trains.

Agricultural Sources
Agricultural operations, those that raise animals and grow crops, can generate emissions of gases and particulate matter. For example, animals confined to a barn or restricted area (rather than field grazing), produce large amounts of manure. Manure emits various gases, particularly ammonia into the air. This ammonia can be emitted from the animal houses, manure storage areas, or from the land after the manure is applied. In crop production, the misapplication of fertilizers, herbicides, and pesticides can potentially result in aerial drift of these materials and harm may be caused.

Natural Sources
Although industrialization and the use of motor vehicles are overwhelmingly the most significant contributors to air pollution, there are important natural sources of “pollution” as well. Wildland fires, dust storms, and volcanic activity also contribute gases and particulates to our atmosphere.

Unlike the above mentioned sources of air pollution, natural “air pollution” is not caused by people or their activities. An erupting volcano emits particulate matter and gases; forest and prairie fires can emit large quantities of “pollutants”; plants and trees naturally emit VOCs which are oxidized and form aerosols that can cause a natural blue haze; and dust storms can create large amounts of particulate matter. Wild animals in their natural habitat are also considered natural sources of “pollution”. The National Park Service recognizes that each of these sources emits gases and particulate matter into the atmosphere but we regard these as constituents resulting from natural processes.

EE-Unit-II Earth’s Energy Balance

Earth’s Energy balance describes how the incoming energy from the sun is used and returned to space.  If incoming and outgoing energy are in balance, the earth’s temperature remains constant.

Essentially 100% of the energy that fuels the earth comes from the sun.  To maintain a constant global average temperature, all of the sun’s radiation that enters Earth’s atmosphere must eventually be sent back to space.  This is achieved through Earth’s energy balance.  Figure A depicts how the energy from the sun is absorbed, reflected, and emitted by the earth.

Solar energy is broken down into how much is used in what ways.

 

Figure A: Earth’s Energy Balance

100% of the energy entering earth’s atmosphere comes from the sun.

~50% of the incoming energy is absorbed by the earth’s surface i.e. the land and oceans.

~30% is directly reflected back to space by clouds, the earth’s surface and different gases and particles in the atmosphere (the earth’s albedo is 0.3 on average).

~20% is absorbed by the atmosphere and clouds.

The 70% of the sun’s energy that is absorbed by the earth’s surface, clouds, and atmosphere causes warming.  Any object or gas that has a temperature emits radiation outward, and this is ultimately re-radiated back into space.  This occurs 24 hours a day, and the energy is emitted as longwave radiation due to the characteristic temperatures of the earth and atmosphere.

Consider a stove, for example.  If you were cooking, you’d have the burner turned on so it would heat up.  The burner is like the earth and the heat source, be it gas or electric, is like the sun.  When you’re done cooking you turn off the burner, but it stays hot for a long while even after the heat source is gone.  Turning off the burner is like the sun going down.  Even though there is no more energy input, there is still energy output in the form of infrared radiation.  The burner stays hot because it’s still emitting the energy it absorbed earlier, just like the earth.  This time delay is sometimes called “thermal inertia.”

Most of the energy emitted from the earth’s surface does not go directly out to space.  This emitted energy is reabsorbed by clouds and by the gases in the atmosphere.  Some of it gets redistributed by convection.  Even more energy is released into the atmosphere through condensation.  The majority of the energy is reabsorbed by the greenhouse gases such as methane, nitrous oxide, ozone, carbon dioxide and water vapor.  These gases constantly emit the sun’s energy back into the atmosphere and keep the earth a habitable temperature.  Eventually, most of the energy makes its way back out to space and Earth’s energy balance is fairly well maintained.  The energy that doesn’t make its way out is responsible for global warming.

On a global scale, the atmosphere’s circulation and weather is an attempt to balance differences in solar energy that the earth receives across the globe.  Sunlight at the tropics is intense and direct and a lot of heating of land, atmosphere, and oceans occur there.  Sunlight in the polar regions is weak and indirect and does not do a good job of heating up the region.  Currents in wind and ocean water carry energy from the tropics toward the poles to help balance out the energy differences across the globe.

How does this relate to agriculture?

The daily change of temperature and the seasonal changes of weather are both effects of the delicate balance of incoming sunlight and outgoing longwave radiation.  On a clear and windless day, the temperature will rise following the course of the sun.  But even after noon, when solar radiation begins to decline, temperatures will continue to rise because the land is trying to reach a balance of incoming and outgoing energy.  In winter when days are short, the peak temperatures can occur 2-3 hours after noon.  In summer when days are longer, it can be 4 to 5 pm before the highest temperatures are reached.  The coolest temperatures usually occur just around sunrise when no sunlight has hit the ground for several hours.  Planning fieldwork late in the afternoon is more likely to result in ill effects of high temperatures and heat exhaustion in summer because of this thermal lag.

The seasons also reflect the attempts of the earth to balance incoming and outgoing energy on a larger scale.  Just like the lag of temperatures on a day, the hottest summer temperatures occur after the maximum sunlight has been reached.  In the Southeast this generally happens about a month after the summer solstice (when the sun is highest in the sky at noon).  Similarly, the coldest temperatures tend to occur about a month after the winter solstice in December.